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Abstract

Digital signatures are essential asymmetric primitives of modern cryptography. Most security
protocols rely on them at some point, to authenticate a peer or ensure authenticity and
integrity of a document. Yet, signature schemes widely deployed today would be easy to
break with a large-scale quantum computer, due to Shor’s algorithms. Hence, a significant
line of research is focusing on the design of post-quantum cryptographic schemes, and the
National Institute of Standards and Technology (NIST) has opened a call for proposals to
standardize post-quantum cryptography.

In this master thesis, we focus on signature schemes based on hash functions. They rely
on simple assumptions on hash functions, such as preimage or collision resistance, and their
security is generally well-understood, thanks to simple security reductions to hash functions
properties. However, their signatures are still somewhat large, and the signature size grows
with the planned number of messages issued by a key pair. Also, the simplest and most efficient
hash-based schemes are stateful, which raises the issue of maintaining the state, something
non-trivial in practical scenarios.

Therefore, the goal of this project was to improve the efficiency of stateless hash-based sig-
natures. Towards this end, we propose new constructions and improve existing ones. We also
present a cryptanalysis of the subset-resilience problem, showing new attacks and proposing
fixes. We then review security reductions for hash-based signature schemes. Last, we outline
a specification for a new stateless scheme that builds upon our analysis, and will be the basis
for a proposal to NIST.
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Notations

Acronyms

EU-CMA existential unforgeability under chosen-message attacks

FTS few-time signature

HORS hash to obtain a random subset

KiB 210 bytes

LWOTS Winternitz one-time signature with L-tree

SHA secure hash algorithm

SIMD single instruction multiple data

MiB 220 bytes

NIST National Institute of Standards and Technology

ORS obtain a random subset

OTS one-time signature

PORS PRNG to obtain a random subset

PRF pseudo-random function family

PRNG pseudo-random number generator

SU-CMA strong unforgeability under chosen-message attacks

WOTS Winternitz one-time signature

Symbols

∅ empty set

⊥ invalid element, to signal an error

N set of non-negative integers

A∗
⋃∞
n=0A

n
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A+
⋃∞
n=1A

n

A≤m
⋃m
n=0A

n

A \B set difference of A and B, {a ∈ A|a /∈ B}

(A→ B) set of functions from A to B

Pk(A) subsets of A containing at most k elements

Bn set of n-bit strings {0, 1}n

|x| bit length of string x

x||y concatenation of strings x and y

dxcn n-bit encoding of integer 0 ≤ x < 2n

⊕ bitwise XOR

∧ logical AND

∨ logical OR

bxc floor, equal to max{n ∈ N|n ≤ x}

dxe ceil, equal to min{n ∈ N|n ≥ x}

π a well-known mathematical constant
∫ 1
−1

dx√
1−x2(

n
k

)
binomial coefficient n!

k!(n−k)!{
n
k

}
Stirling number of the second kind 1

k!

∑k
j=0 (−1)k−j

(
k
j

)
jn

Tk(x) Touchard polynomial
∑k

i=0

{
k
i

}
xi

f(n) = O(g(n)) ∃A ∈ N,∀n ∈ N, f(n) ≤ Ag(n)

f(n) = Θ(g(n)) f(n) = O(g(n)) ∧ g(n) = O(f(n))

Pr[A] probability of event A

Pr[A|B] probability of event A conditioned to event B

← affectation

$← randomized affectation following uniform distribution

sorted(. . .) sequence of integers sorted in increasing order

unique(. . .) remove duplicate values from a sequence

uniquek(. . .) first k distinct values of a sequence

substr(x, i, n) substring of x of length n bits starting at bit index 0 ≤ i < |x|
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Introduction

Digital signatures are an essential primitive of modern cryptography, as a means to ensure
authenticity of documents and messages. A signature scheme is an asymmetric primitive that
allows a signer to generate a pair of public and secret keys, distribute the public key to other
users, and later issue signatures of messages. These signatures are generated with the secret
key and can be verified with the public key.

Signatures are ubiquitous in security protocols, as a means to authenticate communicat-
ing parties (TLS, SSH), deploy a public-key infrastructure (certificates), ensure integrity of
packages in software stores, etc. Today, widely used signature schemes rely on the hardness of
mathematical problems such as factoring or discrete logarithm in certain groups. Yet, if one
could build a large-scale quantum computer, these problems would be easy to solve thanks to
Shor’s algorithms [Sho94]. Even though such a large-scale quantum computer does not exist
yet, this is an active research field in physics. Hence, it seems reasonable for cryptographers to
research post-quantum cryptographic schemes – which would be secure even against quantum
computers. In this context, the National Institute of Standards and Technology (NIST) has
recently opened a call for proposals for post-quantum cryptography standardization [NIS16].

Several methods were proposed to design post-quantum signature schemes: based on
lattices, hash functions, multivariate equations, error-correcting codes. In this project, we
focus on hash-based schemes. Their main advantage is that they rely on simple assumptions on
hash functions, such as collision or second-preimage resistance, instead of a specific algebraic
structure. In particular, if an attack is discovered in a hash function, one can replace it by
another function without modifying the overall structure of the scheme. Most hash-based
schemes also come with relatively simple proofs of security reductions to the hash function’s
properties. Their main drawback is signature size, which typically grows with the number
of messages signed by a key pair. For this reason, a significant line of research focused on
improving their efficiency.

Besides, the simplest hash-based schemes are stateful, which means that a signer must
maintain a state that is modified every time a signature is issued. This requirement can be a
burden because trivial forgeries become possible if it is violated once, e.g. if two signatures are
issued in the same state. Stateful schemes must therefore guarantee that this kind of misuse
will not happen, which can be non-trivial for practical systems. On can think of rolling
back the state of a machine after a crash, cloning virtual machines, or maintaining a pool of
signing machines working in parallel. Hence, an alternative design goal is to construct stateless
signatures schemes, and the recent proposal SPHINCS [BHH+15] is a practical example. Yet,
it is much less efficient than stateful signature schemes of the XMSS family [BDH11, HRB13,
HRS16].
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In this project, we explore ways to improve the efficiency of stateless hash-based signatures,
attempting to bridge the gap with stateful schemes. Towards this end, we propose new
constructions and improve existing ones. We present a cryptanalysis of the subset-resilience
problem and review security reductions for hash-based signature schemes. We then outline a
specification for a new stateless scheme, improving over SPHINCS thanks to our analyses. It
will be the basis for a proposal to NIST.

Organisation of this report

This master thesis is organized as follows. In Chapter 1, we recall general definitions about
signature schemes and hash functions, and review the effect of quantum computers against
hash functions. In Chapter 2, we review the history of hash-based signature schemes. In
Chapter 3, we summarize our improvements proposed and studied during this project to in-
crease the efficiency of stateless hash-based signatures. In Chapter 4, we propose an analysis
of the subset resilience problem, showing that the textbook version of HORS [RR02] is bro-
ken due to adaptive attacks. We also propose a new PORST construction, improving over
HORST to increase its security level. In Chapter 5, we propose octopus authentication, an
improved method to authenticate several leaves in a Merkle tree, and quantify the associated
decrease in signature size. In Chapter 6, we explain why XOR masks are not necessary against
post-quantum adversaries, and propose clarified security proofs with reductions to collision
resistance. In Chapter 7, we propose a specification for a new hash-based signature scheme
that we call Gravity, building upon our previous analyses.

2



Chapter 1

Preliminaries

1.1 General definitions

In this section we recall common definitions and security notions about signature schemes,
hash functions and related primitives.

1.1.1 Notations

Given a positive integer n, we denote by Bn = {0, 1}n the set of n-bit strings. We let
B∗n =

⋃
i∈NB

i
n and B+

n =
⋃
i∈N\{0}B

i
n. Given parameters k and t, we let T = {0, . . . , t − 1}

and we denote by Pk(T ) the subsets of T of size at most k. Given two sets A and B, we
denote by (A→ B) the set of all functions from A to B.

We define security properties in terms of adversarial advantage, i.e. success probability of
an adversary. Given a security property P on a scheme S, and an adversary A against P, we
denote by SuccP

S (A) the advantage of A against property P of S. Given a set of resources ξ
(time, number of queries, etc.), we define the insecurity of S for P as:

InSecP(S; ξ) = max
|A|≤ξ

{SuccP
S (A)}

where |A| ≤ ξ means that adversary A uses at most resources ξ.
We formalize security properties with games, following the framework of Bellare and Ro-

gaway [BR06]. A game contains an Initialize procedure, a Finalize procedure and game-
specific oracle procedures. An adversary A playing a game G corresponds to the sequential
execution of the Initialize procedure, the algorithm A (with calls to the oracle procedures)
and the Finalize procedure with the adversary’s output as input. Given some scheme Π
(that gives a concrete implementation for G), we denote by Pr[AGΠ ⇒ b] the probability that
b is the output of A playing G.

In algorithms, we denote by x← y the affectation of value y to variable x. We denote by

x
$← X the affectation to x of an element chosen uniformly at random from the finite set X.

1.1.2 Signatures schemes

Definition 1 (Stateless signature scheme). Given a message space M (e.g. Bn or {0, 1}∗),
a public key space PK, a secret key space SK, and a signature space SG, a stateless signature
scheme is a triplet (KG,S,V) where:

3



• KG : {1}∗ → PK × SK is a randomized key generation function, that takes as input a
security parameter n ∈ N in unary notation 1n;

• S : SK ×M→ SG is a deterministic signing function;

• V : PK ×M×SG → {0, 1} is a deterministic verification function.

We require the following property:

• (correctness) if a key pair (pk, sk) ∈ PK×SK is the result of a call to KG(1n), then for
all M ∈M, V(pk,M,S(sk,M)) = 1.

For convenience, we also define what we call extractable signature schemes, for which the
verification function takes a particular form. Extractable schemes will be useful for construc-
tions such as Merkle trees.

Definition 2 (Extractable signature scheme). A stateless signature scheme is extractable if
there is an efficient (i.e. polynomial time in n) deterministic extraction function E :M×SG →
PK which extracts the public key from a message and signature, such that for all pk ∈ PK,
M ∈M and σ ∈ SG:

V(pk,M, σ) =

{
1 if E(M,σ) = pk

0 otherwise

Remark Not all signature schemes are extractable: there may be several public keys that
generate the same message-signature pair, and even if extraction is well-defined it is not always
efficient. For example, there is no obvious way to efficiently extract an RSA public key in the
general case – although in practice the public exponent is often chosen to be a small value.
However, any signature scheme can be turned into an extractable scheme by appending the
public key to each signature. Yet, this overhead is unnecessary for many hash-based schemes,
hence we make an explicit distinction.

We also define the following variants of signature schemes.

Definition 3 (Indexed signature scheme). Given an index space I, an indexed signature
scheme is a signature scheme for which signing and verification take an index as additional
argument, i.e. S : SK × I ×M→ SG and V : PK × I ×M×SG → {0, 1}. The scheme can
also be extractable, with an indexed extraction function E : I ×M× SG → PK.

Correctness requires that if a key pair (pk, sk) ∈ PK×SK is the result of a call to KG(1n),
then for all i ∈ I, and all M ∈M:

V(pk, i,M,S(sk, i,M)) = 1

Definition 4 (Batch signature scheme). Given a batch size N , a batch signature scheme is a
signature scheme that signs N messages at once, i.e. the signing function is S : SK×MN →
SGN . Verification is unchanged, i.e. each message is verified individually. The scheme can
also be extractable.

Correctness requires that if a key pair (pk, sk) ∈ PK×SK is the result of a call to KG(1n),
then for all i ∈ {1, . . . , N}, and all (M1, . . . ,MN ) ∈MN :

V(pk,Mi,S(sk, (M1, . . . ,MN ))i) = 1

4



We now recall security notions for signature schemes. We start with existential unforge-
ability, against which an adversary tries to forge the signature of a message that was not
signed.

Definition 5 (EU-CMA). The advantage of an adversary A against existential unforgeability
under chosen message attacks of (KG,S,V) is:

SuccEU-CMA
(KG,S,V) (A) = Pr[(pk, sk)

$← KG(1n); (M,σ)← AS(sk,·)(pk) : V(pk,M, σ) = 1]

with the restriction that the message M output by A was not queried to the signing oracle S.

Against strong unforgeability, an adversary can also propose an alternative signature for
a message that was already signed.

Definition 6 (SU-CMA). The advantage of an adversary A against strong unforgeability
under chosen message attacks of (KG,S,V) is:

SuccSU-CMA
(KG,S,V)(A) = Pr[(pk, sk)

$← KG(1n); (M,σ)← AS(sk,·)(pk) : V(pk,M, σ) = 1]

with the restriction that the pair (M,σ) output by A is such that the signature σ was not the
result of a query of the message M to the signing oracle S.

1.1.3 Hash functions

Definition 7 (Hash function family). Given an integer security parameter n, an integer
key parameter k, an integer input parameter m, a hash function family Fn is a set of func-
tions from {0, 1}m to {0, 1}n indexed by the key space {0, 1}k. In other words, Fn = {FK :
{0, 1}m → {0, 1}n|K ∈ {0, 1}k}.

Remark In practice, hash functions such as MD5, SHA-1, SHA-256 have no explicit key.
However, as mentioned by Bellare and Rogaway [BR97, Section 2], some security notions
such as collision resistance are meaningless without a key. Indeed, an adversary could simply
hardcode the result (i.e. a collision) in its algorithm, obtaining a large advantage without
doing much work. With the key, such trivial adversaries are inefficient because they would
need to hardcode 2k results in their algorithm, so there is hope that a secure hash function
family exists. In practical terms [BR97, Remark 5.2], one can think of a keyless hash function
like SHA-256 as an instance FK where the key K was implicitly sampled by its creators. This
fundamental problem of “human ignorance” was formalized by Rogaway in [Rog06].

We now give security properties for hash functions. A hash function family is one-way if
it is hard to retrieve a preimage.

Definition 8 (OW). The advantage of an adversary A against one-wayness of Fn is:

SuccOW
Fn (A) = Pr[K

$← {0, 1}k;M $← {0, 1}m;h← FK(M);M ′ ← A(K,h) : FK(M ′) = h]

A hash function family is second-preimage-resistant if it is hard to retrieve a distinct
preimage, knowing one preimage.

5



Definition 9 (SPR). The advantage of an adversary A against second-preimage resistance
of Fn is:

SuccSPR
Fn (A) = Pr[K

$← {0, 1}k;M $← {0, 1}m;M ′ ← A(K,M) : M ′ 6= M ∧ FK(M ′) = FK(M)]

A hash function family is collision-resistant if it is hard to find two messages with the
same image.

Definition 10 (CR). The advantage of an adversary A against collision resistance of Fn is:

SuccCR
Fn (A) = Pr[K

$← {0, 1}k; (M1,M2)← A(K) : M1 6= M2 ∧ FK(M1) = FK(M2)]

A hash function family is undetectable if it behaves as if outputting random bits, under a
randomly selected key.

Definition 11 (UD). The advantage of an adversary A against undetectability of Fn is:

SuccUD
Fn (A) =

∣∣Pr[ADUD,Fn = 1]− Pr[ADUD,U = 1]
∣∣

where DUD,Fn and DUD,U are distributions over {0, 1}k×{0, 1}n defined as follows. To sample

from DUD,Fn, sample a key K
$← {0, 1}k, a message M

$← {0, 1}m and output (K,FK(M)).

To sample from DUD,U , sample a key K
$← {0, 1}k, a bit string U

$← {0, 1}n and output
(K,U).

1.1.4 Pseudo-random functions

A function family Gn = {GK : {0, 1}m → {0, 1}p|K ∈ {0, 1}n} is pseudo-random if it is hard
to distinguish from a function uniformly sampled in the space of functions from {0, 1}m to
{0, 1}p.

Definition 12 (PRF). The advantage of an adversary A against pseudo-randomness of Gn
is:

SuccPRF
Gn (A) =

∣∣∣Pr[K $← {0, 1}n : AGK(·) = 1]− Pr[F
$← ({0, 1}m → {0, 1}p) : AF (·) = 1]

∣∣∣
1.2 Impact of quantum computers on hash functions

Given that currently deployed signature schemes (DSA, ECDSA) are much more efficient than
hash-based signature schemes, the latter would mostly be useful in a post-quantum setting –
unless an efficient classical attack against (EC)DSA is discovered. Hence, it is important to
have in mind the complexity of generic quantum attacks against hash functions. We consider
a hash function family Fn that outputs n bits.

In the classical world, generic attacks against (second-)preimage resistance have a com-
plexity of Θ(2n) (i.e. brute-force guessing the preimage), and generic attacks against collision
resistance have a complexity of Θ(2n/2) [vOW94] (due to the birthday paradox). For this
reason, hash-based schemes have often tried to rely only on (second-)preimage resistance of
the underlying hash function rather than collision resistance, as n can potentially be chosen
twice smaller.
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classical quantum

Preimage Θ(2n) Θ(2n/2)

Second-preimage Θ(2n) Θ(2n/2)

Collision Θ(2n/2) Θ(2n/2)

Table 1.1: Complexity of generic attacks against hash functions families with n bits of output.

In the post-quantum world, Grover’s algorithm [Gro96] allows to find preimages with a
complexity of Θ(2n/2). However, collision resistance is not affected: even though Brassard et
al. [BHT98] proposed a quantum algorithm making Θ(2n/3) quantum queries, a finer analysis
by Bernstein [Ber09] showed that this method would require so much hardware that the
overall complexity wouldn’t beat the classical algorithm of complexity Θ(2n/2). To summarize,
assuming only generic attacks against Fn, the post-quantum security of Fn is n/2 bits for
preimage resistance as well as collision resistance (Table 1.1).

Remark For applications that consider only classical attacks in their threat model, con-
structions that rely only on (second-)preimage resistance may exist and be more efficient than
constructions that require collision resistance. However, in this report we consider quantum
attacks in our threat model.
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Chapter 2

A history of hash-based signature
schemes

In this section, we review the current state of hash-based signature schemes. The first such
scheme proposed in 1976 allowed to sign a single bit with an asymmetric key pair [DH76].
Since then, several innovations have allowed to sign larger messages with a small public key,
to scale to a practically unlimited number of messages signed by a single key pair, and to
construct stateless schemes. We adopt a bottom-up approach, starting with the older building
blocks, that are the basis of more recent and complex schemes.

2.1 Foundations of hash-based signatures

The most basic hash-based signature scheme was proposed by Diffie and Hellman upon an
idea by Lamport [DH76]. Given a security parameter n and a one-way function F : {0, 1}n →
{0, 1}n, the following one-time scheme allows to sign a single bit. The secret key consists of
two random values x0, x1 ∈ {0, 1}n; the associated public key is (y0, y1) := (F (x0), F (x1)).
The signature σ for a bit b is the associated secret value σ = xb; to verify the signature, one
applies F to check that yb = F (σ).

From this simple scheme, the authors proposed to sign messages of m bits by using m
instances of the 1-bit scheme. More precisely, the secret key consists of 2m random values xib
(for b ∈ {0, 1} and 1 ≤ i ≤ m); the associated public key is (yib)b,i := (F (xib))b,i. The signature

σ for an m-bit message M = M1 . . .Mm is then σ = (xiMi
)
i
, which can be verified by checking

that yiMi
= F (σi) for all i.

Arbitrary long messages

To sign messages of arbitrary length, Diffie and Hellman further proposed to use the hash-
then-sign construction: a collision-resistant hash function H is applied to the message M to
obtain a hash h = H(M) of m bits, which is itself signed with the previous scheme, i.e. the
signature σ consists of σ = sign(H(M)).

However, if an attacker manages to find a collision H(M0) = H(M1), they can then re-
quest a signature σ for M0 and reuse σ as a forgery for M1. To relax this requirement of
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a collision-resistant hash function, Naor and Yung proposed universal one-way hash func-
tions (UOWHF) [NY89], reformulated by Bellare and Rogaway as target collision resistance
(TCR) [BR97]. In practice, one uses a keyed hash function family with a per-signature key K,
and the signature is σ = (sign(K||HK(M)),K), where the key K is randomly and uniformly
chosen by the signer for every signature. This means that if an attacker finds a collision
HK0(M0) = HK1(H1) in an offline manner, they cannot apply it to attack the scheme because
the key chosen by the signer is unlikely to be K0. Instead, the adversary needs to break the
TCR property of the hash function family, for which generic attacks are much slower than
birthday attacks.

The need for more efficient schemes

This method already allows to sign arbitrary messages with minimal assumptions on the
underlying functions, notably without relying on trapdoors. Yet it is still unpractical: keys
and signatures are quite large and it can only be used one time. Indeed, if the scheme is used
twice, an attacker requesting the all-zero and all-one messages (in a chosen message attack)
can then forge any message, because they know all the secret values xib. Despite this major
drawback, many other signature schemes started from this building block and improved the
idea to make it more efficient.

2.2 One-time signature (OTS) schemes

In this section, we review one-time signature schemes that were proposed to sign elements of
a large message space, namely 128 or 256 bits (which is sufficient for messages of practically
unlimited length thanks to the hash-then-sign construction). Although these schemes can
only be used once, they are useful building blocks for practical many-time signature schemes.

2.2.1 Winternitz

The Winternitz one-time signature scheme (WOTS) was first proposed by Merkle [Mer89]
following an idea of Winternitz. For a target message space of n bits, one chooses parameters
` and w such that ` · log2w = n. The secret key consists of ` n-bit strings (s1, . . . , s`) and the
public key is (Fw−1(s1), . . . , Fw−1(s`)), that is a one-way function F iterated w− 1 times on
the secret key. We can view this construction as ` chains of iterated F , each chain being of
length w − 1. To sign a message x, decomposed into ` chunks of log2w bits (x1, . . . , x`), the
signer issues (F xi(si))1≤i≤`. Verification is done by computing Fw−1−xi(yi) for each signature

element yi, and comparing the result to the public key element Fw−1(si).

However, this scheme is not secure in this form because given the signature of x =
(x1, . . . , x`) one can easily forge a signature for any y ≥ x (by this notation we mean
∀i, yi ≥ xi). The public key is also trivially the signature of the all-ones message. To cope
with that, a checksum C(x) is first appended to the message x to form x′ = x||C(x), and the
signature is σ = sign(x′). This checksum is computed as:

C(x) =
∑̀
i=1

w − 1− xi
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Due to this choice, y > x implies that C(y) < C(x), so that y′ ≥ x′ never holds for distinct x
and y, hence avoiding the trivial forgery attack. The checksum consists of `C bits, resulting
in keys and signatures of `′ = `+ `C values instead of `, where:

`C =

⌊
log2 `(w − 1)

log2w

⌋
+ 1

Variants of the chaining function

Several variants were proposed for the chaining function F i, to reduce the security of the
scheme to various properties of F . We reuse the terminology of Hülsing [Hül13] to name
these variants, i.e. WOTSCR, WOTSPRF and WOTS+.

The simplest variant is WOTSCR – appearing in Merkle’s paper [Mer89] – for which
the chaining function F i is the i-th iteration of F : F 0(x) = x, F i = F (F i−1(·)). Dods et
al. [DSS05] have shown that WOTSCR is EU-CMA assuming that F is one-way, collision-
resistant and undetectable.

In [BDE+11], Duchmann et al. proposed WOTSPRF, where F is replaced by a pseudo-
random function family (PRF) Fn = {FK}. They proposed an unusual construction for
the chaining function, where the output of the previous iteration is used as the PRF key :
F 0
K(·) = k, F iK = FF i−1

K (·)(·). This leads to non-standard security notions, e.g. second key

resistance or key collision resistance. They showed that WOTSPRF is SU-CMA assuming
that Fn is second-key- or key-collision-resistant.

In [Hül13], Hülsing proposed WOTS+, for which each iteration uses a random mask ri,
namely F 0

K(x) = x, F iK = FK(F i−1
K (·)⊕ ri). The PRF key K and the masks (r1, . . . , rw) are

part of the public key. Please note that the masks (r1, . . . , rw) are the same for all the chains,
i.e. the chosen mask depends only on the iteration counter i. The advantage of WOTS+ is
that is does not require Fn to be collision-resistant, but simply second-preimage resistant and
pseudo-random (a proof of EU-CMA is given in [Hül13]).

Against classical adversaries, this relaxed requirement avoids birthday attacks, which is
beneficial for performance, because smaller parameters offer the same level of security w.r.t.
WOTSCR. However, as we mentioned before, avoiding collision resistance is not worth the
extra complexity against quantum adversaries. We study this in more details in Chapter 6.

2.2.2 Theoretical results on graph-based one-time signature schemes

Between 1994 and 1996, Bleichenbacher and Maurer published several theoretical results for
one-time signature schemes based on directed acyclic graphs [BM94, BM96b, BM96a]. In these
schemes, edges are one-way functions and vertices are inputs/outputs to these functions. A
subset of these vertices is the secret key, another subset is the public key, and signatures are
cutsets between the two. Each element in the message space is associated with a distinct
cutset. For the signature scheme to be (computationally) unforgeable, the set of signatures
must be an antichain of a suitable partially-ordered set (poset) over all minimal cutsets in
the graph.

An interesting property is the size of the message space achievable for a given graph,
which corresponds to the number of elements in a maximal antichain. For example, one may
be interested in signing messages of 128 bits, in which case an antichain of 2128 elements
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is necessary. Hence, Bleichenbacher and Maurer studied the maximal efficiency that can be
obtained for such schemes, in terms of the message space size w.r.t. the number of nodes in
the graph. They also conjectured that some graphs are maximally efficient in terms of the
message space size w.r.t. the signature size [BM96a], namely that Winternitz-like one-time
signatures [Mer89, DSS05, BDE+11, Hül13] are asymptotically optimal.

In 2002, Hevia and Micciancio [HM02] proposed a new formalism for such graph-based
one-time signature (GBOTS) schemes. They considered graphs with two types of nodes:
expansion and compression vertices, respectively corresponding to a length-doubling pseudo-
random number generator (PRNG) and a length-halving hash function. They proved that
the security of GBOTS schemes (existential forgery under one-chosen-message attack) can
be reduced to usual properties of the underlying hash function and PRNG, namely non-
invertibility, collision resistance and pseudo-randomness. In [DSS05], Dods et al. did a similar
analysis to reduce the success probability of a forger to the undetectability, second-preimage
resistance and collision resistance of the hash function.

An interesting perspective is that this formalism encompasses most proposed one-time
signature schemes, among which Winternitz [Mer89, DSS05, BDE+11, Hül13], HORS [RR02],
HORS++ [PWX03], HORST [BHH+15]. However, some of the latter schemes are also few-
time signature schemes, which goes beyond the scope of Bleichenbacher-Maurer and Hevia-
Micciancio works.

2.3 Few-time signature (FTS) schemes

Winternitz-like schemes are trivially insecure against two chosen messages attacks: with the
signatures of the all-zero and all-one messages, an adversary can forge the signatures of all
messages (although a recent work [BH16] has shown that it is still asymptotically secure for
two messages in the model of random message attacks). On the other hand, so-called few-time
signature (FTS) schemes were designed to be reusable a few times – typically a dozen – and
still remain secure. They are also useful building blocks for many-time signature schemes.

2.3.1 Bins and Balls (BiBa)

In [Per01], Perrig proposed the “bins and balls” (BiBa) scheme. This scheme is parametrized
by a number of bins n, a number of balls t, as well as integers m1 and m2. The secret key
consists of t balls (also called “SEALs”), that is random m2-bit values (x1, . . . , xt). The public
key consists of t commitments to these values (y1, . . . , yt); e.g. the author proposed to use a
PRF Fn as: yi = Fxi(0).

To sign a message M , one first computes a hash h = H(M). This hash allows to select a
function Gh : {0, 1}m2 → {0, . . . , n − 1} among a hash function family Gn. The signer then
computes gi = Gh(xi) for all the balls xi, hoping to find a collision gi = gj . If this is the
case, the signature σ consists of the secret values along with their indices σ = (i, j, xi, xj),
otherwise signature fails. To verify the signature, one computes h = H(M) and checks that
Gh(xi) = Gh(xj) as well as the commitments to the secret values yi = Fxi(0) and yj = Fxj (0).

Thanks to the birthday paradox, the signing failure probability is ≈ exp(−t(t − 1)/2n),
i.e. failure can be ruled out with high probability if t is large w.r.t.

√
n. On the other hand,

an adversary knowing few secret values (from previous signatures) can forge a given message
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with probability 1/n, assuming they cannot invert Fn. To increase the security level, Perrig
proposed to use multi-way collisions instead of two-way collisions. If one requires a collision
of k balls in the same bin, the forgery probability becomes (1/n)k−1 ≈ k!/2tk for a constant
failure probability of 1/2. Perrig also analyzed how the scheme can be used a few times.

2.3.2 Subsets-based schemes

In 1979, Lamport [Lam79] proposed a new scheme, based on a message space M, a security
parameter n and an integer parameter k (e.g. k = 20). Given a one-way function F : Bn →
Bn and a second-preimage resistant function G : M → Pk(2k), where Pk(2k) denotes the
subsets of {1, . . . , 2k} of size k, the scheme works as follows. A secret consists of 2k values
(x1, . . . , x2k) ∈ B2k

n ; as usual the associated public key is the images of these keys by F , i.e.
(F (x1), . . . , F (x2k)). To sign a message M ∈ M, one selects a subset of k indices as {i1 <
· · · < ik} = G(M) and reveals the associated secrets (xi1 , . . . , xik). The verifier computes the
set of indices with G and verifies that the revealed keys are legitimate by applying F .

In this original version, Lamport proposed to construct G by first applying a one-way
function H : M → {0, 1}2k to obtain an 2k-bit digest of the message, and then include the
indices i such that H(M)i = 1. However, this works only if H(M) contains exactly k bits
equal to 1, which occurs with a probability of Psucc ≈ 0.13 for k = 20. Lamport proposed to
modify the message (e.g. by means of a separate counter) until the signature succeeds – which
takes an average of 1/Psucc trials – but admits that this construction is not satisfactory.

Bos and Chaum [BC92] improved this scheme by proposing a function G defined over the
whole message space M. They assumed a message space of the form M = {0, . . . , |M| − 1}
with size |M| ≤

(
2k
k

)
. As pointed out by Reyzin and Reyzin [RR02], they use the following

equation to determine iteratively if an index i should be included in the subset G(M):(
j

i

)
=

(
j − 1

i− 1

)
+

(
j − 1

i

)
More details about this subset-selection algorithm can be found in the corresponding pa-
pers [BC92, RR02].

These schemes can be viewed as an extension of the Lamport-Diffie-Hellman scheme [DH76]
(that we described in Section 2.1), where instead of revealing one value for each of k pairs,
the signer reveals k values chosen globally without constraint. For the same parameters, this
allows to use a message space of size

(
2k
k

)
instead of 2k, that is messages of ≈ 2k− 1

2 log2(kπ)
bits instead of k bits.

An interesting question is whether we can further increase the size of the message space
for a fixed k, by using a different family of subsets. According to Sperner’s theorem [Spe28],(

2k
k

)
is the maximal number of subsets of {1, . . . , k} such that no subset contains another

subset of the family, which means that this construction is optimal in this setting.

Hash to Obtain a Random Subset (HORS)

In [RR02], Reyzin and Reyzin proposed a more efficient algorithm to map an integer to a
k-subset of {1, . . . , 2k}, improving upon Bos and Chaum [BC92]. They also generalized the
scheme to k-subsets of {1, . . . , t} where k can be much smaller than t/2, in order to reduce
the size of signatures (at the expense of larger public keys).
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They then proposed a new construction called hash to obtain a random subset (HORS).
Instead of using an injective mapping G : M → Pk(t), they propose to use a hash function
H : M → {0, 1}kτ , where t = 2τ . To sign a message M , the hash h = H(M) is split
into k numbers of τ bits h1, . . . , hk. These numbers form a subset G(M) = {h1, . . . , hk}
of {1, . . . , t} and the signature consists of the secrets (xh1 , . . . , xhk). The subset G(M) may
contain redundant indices, but they argue that this is not a problem, and the mapping from
messages to subsets is more straightforward to compute with this method. However, we will
see in Chapter 4 that this potential redundancy is problematic.

Reyzin and Reyzin also note that this scheme allows to produce several signatures. In
that case, security reduces to the hardness of the subset-resilience problem, and they estimate
the security level for r signatures as k(log2 t − log2 k − log2 r) bits for non-adaptive attacks.
However, they did not study adaptive attacks – where the adversary can compute H in an
offline manner – and we will see in Chapter 4 that these attacks are much more effective.

In [PWX03], Pieprzyk et al. proposed HORS++. Given a message space of size n, a secret
key consisting of t values and a reuse parameter r, they propose to use an (n, t, r)-cover-free
family (CFF) X to produce up to r signatures without loss of security. More precisely, a
cover-free family X = {Xi|1 ≤ i ≤ n} with Xi ⊆ {1, . . . , t} is such that for all ∆ ⊆ {1, . . . , n}
with |∆| = r and for all i /∈ ∆:

Xi \
⋃
j∈∆

Xj 6= ∅

In other words, no set Xi is covered by r other sets of X . To estimate the performance
of the scheme, they use well-known results about the existence of CFFs depending on the
parameters (n, t, r). They also propose instantiations of CFFs based on polynomials, error-
correcting codes and algebraic curves.

It is worth noting that contrary to HORS, for which security degrades gradually with r,
the maximal number of messages signable by an instance of HORS++ is fixed in advance.
Indeed, HORS++ is secure up to r chosen-message signatures – assuming one-wayness of the
function F used to compute public keys – but insecure for r + 1 chosen messages.

In [BHH+15], Bernstein et al. proposed HORST, a.k.a. HORS with trees. They noted that
a HORS public key can be quite large – typically t = 216 values of n = 256 bits each – but
only a few secret values are revealed in a signature – typically k = 32 values per signature. To
reduce the combined size of a public key and a signature, they proposed to use a Merkle tree
(see Section 2.4.1) to authenticate the public values. Hence, the public key consists of only
one n-bit value (the root of the Merkle tree), and each signature includes k authentication
paths (each of log2 t n-bit hashes) along with the k secret values. They also proposed to cut
the authentication paths before the root and instead include all Merkle tree nodes at level
x = 6, to avoid repetitions between overlapping authentication paths and further reduce the
signature size. In Chapter 5, we will present an improvement over this authentication method.

2.4 Many-time signature schemes

In practice, a signer wishes to create many more signatures. This is for example the case for
a software store or a certificate authority. A practical target could be 250 messages signed
by a given public key: as pointed out by Bernstein et al. [BHH+15], this corresponds to
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220 messages per second for over 30 years. In the NIST call for proposals for post-quantum
cryptography, the target is 264 chosen messages [NIS16, Section 4.A.4].

2.4.1 Merkle Trees

The first way to create a many-time signature scheme out of a one-time signature scheme is
to use the construction proposed by Merkle in 1989 [Mer89]. Given integers n, h and a hash
function H : {0, 1}2n → {0, 1}n, a so-called Merkle tree is a binary tree of height h whose
nodes are each labelled with a value x ∈ {0, 1}n, such that the value of each internal node is
computed as x = H(y||z) where y and z are the values of the left and right children.

The root value r can first be sent to later authenticate compactly any of the 2h leaf values
v1, . . . , v2h . Indeed, to verify that a value v is at leaf index i, one simply needs v, i and the
authentication path of i. This authentication path contains the siblings of all the nodes on
the path between leaf i and the root (h values). This allows to recursively compute the values
of internal nodes up to the root, and compare the result to r.

This construction allows to turn a one-time signature scheme into a many-time signature
scheme as follows. Given 2h instances of the OTS, the signer generates the Merkle tree whose
leaf values are each the public key of an OTS instance. The overall public key is the root
value. The i-th signature contains a signature generated by the i-th OTS instance, along with
the authentication path of i.

Hence, the public key only contains n bits, compared to a naive approach with a public
key of 2h OTS public keys, at the expense of slightly larger signatures – h extra n-bit strings.
However, key generation time is exponential in h, because the full Merkle tree needs to be
computed at this stage. For example, h = 20 is possible, but may not be enough for all
signers. Also, the signer needs to keep track of the indices i that have already been used, so
the scheme is stateful.

Relaxing the collision resistance requirement

The original construction of Merkle trees required a collision-resistant hash function family. To
relax this requirement, Dahmen et al. proposed the second-preimage resistant (SPR) Merkle
tree construction (SPR-MSS), by introducing random masks that are XORed after each node
of the tree [DOTV08]. These masks are part of the public key and allow to reduce the
EU-CMA security of the scheme to the second-preimage resistance of the underlying hash
function family.

This introduction of masks is similar to the WOTS+ construction [Hül13], and as such
we repeat our reservations. Even though birthday attacks are avoided classically, the extra
complexity of masks may not be worth it against quantum adversaries. Also, these more
elaborate constructions come at the expense of adding 2h masks to the public key for a tree
of height h. And looking closely to the proofs of security, the security reduction degrades
with a factor of 2h w.r.t. the second-preimage resistance of the hash function – i.e. larger
trees require more resistant hash functions – whereas reduction to collision resistance doesn’t
introduce this degradation factor.

XMSS [BDH11] is a variant of SPR-MSS, where (1) secret values are generated with a
PRNG so that the secret key only consists of a small seed and (2) a so-called L-tree allows to
use any number of bits per signature (not necessarily a power of two).
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In their (now expired) patent [LM95], Leighton et al. further proposed to specialize each
invocation of the hash function in the Merkle tree – and in the underlying OTS – by using
a so-called “security string” consisting of an identifier I unique to the key pair and a unique
address A of this invocation in the tree. In other words, the hash of a value V by a signer with
identifier I at position A in the tree is computed as H(V ||I||A), instead of H(V ). With this
construction, they claimed to reduce security to second-preimage resistance and to protect
against worldwide attackers that try to forge a signature for any signer in the world, thereby
allowing to use shorter hashes and reducing the size of signatures. Similar constructions
were analyzed by Katz [Kat16]. Yet, we point out that I||A is predictable and public, so
the security reduction would rather be relaxed to “known-suffix collision attacks”, which are
still vulnerable to the birthday paradox. Besides, our reservations about second-preimage
reduction also hold in this case.

Incremental algorithms to compute authentication paths

An important performance issue is the computation of authentication paths by the signer.
Indeed, a naive algorithm needs to iterate over all the leaves to generate such a path, hence
running in Θ(2h) time. However, authentication paths for neighboring leaves share a lot in
common, so a natural idea is to use leaves in sequential order with an incremental algorithm
to update the authentication path.

In Merkle’s original paper [Mer89], such an incremental algorithm was proposed, where
h parallel processes compute each a layer of the path, ensuring a worst-case runtime of Θ(h)
per signature. Further improvements were proposed to amortize the costs for stateful sig-
nature schemes that use leaves in sequential order [JLMS03, Szy04, BDS08]. For example,
FMTseq [NSW05] a.k.a. “Fractal Merkle Tree sequential one-time signature” uses the fractal
algorithm by Jakobsson et al. [JLMS03] to produce signatures; from the verifier’s point-of-view
it is a standard combination of a Merkle tree and WOTS.

2.4.2 Generic compositions

In [MMM02], Malkin et al. present two generic composition methods to create new signature
schemes. Given two schemes Σ0 and Σ1 that can respectively sign T0 and T1 messages, the
sum composition Σ0⊕Σ1 allows to sign T0 +T1 messages and the product composition Σ0⊗Σ1

allows to sign T0 ·T1 messages. They reduce the security of composed schemes to the security
of the underlying schemes, in the standard model.

They further present these compositions in the context of forward-secure signature schemes
(for which the leakage of the secret key at a given time period does not allow to forge messages
from previous time periods), and show that they preserve this forward-security property.

They also present a scheme that can sign an “unbounded” number of messages (more
precisely 2n messages where n is the security parameter), and whose performance depends on
the current “time period” (i.e. the number of messages signed so far).

2.4.3 Hyper trees

To overcome the limitation on the number of messages that can be signed with a Merkle
tree – typically 220 – new constructions were proposed that use several layers of Merkle trees.
Essentially, one builds a chain of Merkle trees to increase the capacity of the scheme (i.e.
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the number of messages that can be signed by a single key pair), in the spirit of the product
composition of Malkin et al. [MMM02].

The first such construction was CMSS [BGD+06], which uses two layers of Merkle trees.
A primary tree – whose root is the public key – signs the root of a secondary tree (with
Winternitz OTS) and the secondary tree signs the messages. If both trees have a height
h ≈ 20, 2h messages can be signed with the secondary tree, and 2h trees can be signed by
the primary tree, so 22h messages can be signed in total. To amortize computation costs,
only one tree on each layer is created at key generation; subsequent secondary trees are each
generated progressively as the previous one is used for signatures: one leaf of the new tree is
constructed every time one leaf of the old tree is used. To reduce the memory requirements
for the signer, leaves are generated with a PRNG, so that only a seed is stored in memory.

GMSS [BDK+07] (generalized Merkle signature scheme) extends this construction by using
an arbitrary number of layers of trees. Here again, the public key is the root of the tree at
the uppermost layer; the root of each other tree is signed by its parent tree by means of a
Winternitz OTS; trees at the bottom layer are used to sign messages. The tree height and
Winternitz parameter need not be the same at all layers, and the authors propose several
instantiations of these parameters, optimizing for size or speed. They also propose various
signature capacities, namely 240 or 280 messages per key pair.

Similarly, XMSSMT [HRB13] is a multi-tree variant of XMSS [BDH11]. An overview of
the EU-CMA security proof is given, relying on [MMM02, BDH11, HBB12]. The authors
also formalize selection of parameters as a linear optimization problem and give an optimal
choice of parameters to instantiate the scheme.

XMSS-T [HRS16] is another variant aimed at mitigating multi-target attacks against the
underlying hash function. Indeed, the same hash function is used many times in a signature
scheme such as XMSS, and an attacker could take advantage of finding a (second-)preimage
for any of these instances to break the signature scheme. XMSS-T mitigates such attacks by
keying each instance of the hash function: each node in the hyper tree is given a public and
unique address, from which a hash key is derived.

2.5 Stateless signatures

Although the previous schemes already allow to sign a practically unlimited number of mes-
sages at a reasonable cost, they are stateful, in the sense that the signer must update its
internal state for each signature, for example by using Merkle tree leaves sequentially. This
can be a limitation because the signer must properly manage the state – having several mes-
sages signed in the same state opens the door to trivial forgeries. For example, if one wishes
to sign messages concurrently with several signing machines, the state must be synchronized
over these machines. To overcome this limitation, several stateless signature schemes were
proposed.

2.5.1 Goldreich’s construction

In [Gol04, Section 6.4.2], Goldreich presented a construction based on a binary tree of one-time
signatures. In this construction, each node corresponds to an OTS instance. Each internal
node authenticates the public keys of its two children by means of the OTS, i.e. the OTS of
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node i signs (pkleft(i), pkright(i)) with ski. The overall public key is the OTS public key of the
root node. Leaf nodes use their OTS to sign messages.

More precisely, each signature consists of a path ρ = (ρ1, . . . , ρh) (where ρi is a bit meaning
left or right), authentications Ai of each node on this path and signature σ of the message by
the leaf of the path.

Ai = sign(skρi , (pkleft(ρi), pkright(ρi)))

σ = sign(skρh ,M)

For the scheme to be secure, one must make sure that each OTS is effectively used at most
once. This constraint is verified for internal nodes (which only sign the public keys of their
children), but one needs to make sure that each leaf is used for at most one document. In
other words, the path ρ must be different for every message. Goldreich proposed two ways to
implement this constraint: either define ρ as a counter (but the associated scheme is stateful),
or use a random ρ for every message. In the latter case, one must use a larger tree height h
to avoid collisions, due to the birthday paradox.

Besides, Goldreich proposed to generate the tree on demand to avoid a huge computational
and memory overhead for the signer. More precisely, the secret key only consists of a seed
and each OTS instance is generated by a PRNG taking as argument this seed and the node
index i in the tree. That way, only the root node needs to be computed at key generation
time, and only the nodes on the path need to be computed for each signature. The PRNG is
deterministic (for a given seed), which guarantees the consistency of the scheme (i.e. if a node
is used by several signatures, the same OTS instance will be generated for this node every
time).

2.5.2 SPHINCS

Although Goldreich’s construction already provides a stateless signature scheme, it is highly
inefficient: the typical signature size is more than 1 MiB, as pointed out in [BHH+15]. To
overcome this limitation, the SPHINCS construction [BHH+15] introduces several improve-
ments.

First, the OTS for leaves is replaced by a FTS, to increase the resilience to path collisions,
hence reducing the overall height of the tree.

Second, intermediate nodes are replaced by Merkle trees that each sign 2h children instead
of 2, to form a fully-fledged hyper-tree structure. Although this modification increases signing
time (each Merkle tree on the path needs to be fully generated for every signature), this
reduces the size of signatures, because less OTS instances are included in a signature. Indeed,
Winternitz OTS instances account for the majority of the signature size.

These two optimizations reduce the size of a signature to 41 KiB, with public and secret
keys of 1 KiB, for parameters suitable for 128-bit security against quantum computers.

In Chapter 3, we will present new methods to further improve the performance of SPHINCS,
leading to a new scheme that we call Gravity and formalize in Section 7.
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2.6 Efficient implementations of hash functions

Because hash-based signature schemes often use many evaluations of the underlying hash
function to generate each signature, it is desirable to have fast implementations of hash
functions. This often goes by leveraging CPU-specific instructions, such as Intel’s support
for single-instruction multiple-data (SIMD) instructions – notably for primitives based on
the add-rotate-xor (ARX) paradigm (e.g. Salsa, ChaCha, BLAKE, BLAKE2) – and direct
support for some cryptographic primitives (AES-NI). Some recent constructions were even
proposed specifically to be used in hash-based signature schemes, such as Haraka [KLMR16].

SHA functions

The secure hash algorithms (SHA) are general-purpose hash functions standardized by the
NIST. SHA-1 [sta02] is notoriously broken [WYY05] and a collision was recently disclosed by
Stevens et al. [SBK+17]. SHA-2 and SHA-3 [Dwo15] are general-purpose hash functions that
are mostly optimized for large messages. For example, the Keccak permutation in SHA-3 uses
1600 bits, which implies overhead when hashing small messages (e.g. 256 or 512 bits). Hence,
SHA functions are not optimized for hash-based constructions such as Winternitz OTS and
Merkle trees, that operate on small messages.

BLAKE

In [NA12], Neves and Aumasson presented an optimized implementation of the BLAKE hash
function [AHMP08] with the AVX2 (Intel) and XOP (AMD) processor extensions. They
explained how the new 256-bit SIMD instructions allow to compute ARX operations on sev-
eral columns of the function’s state in parallel. They considered both the BLAKE-256 and
BLAKE-512 versions of the hash function, showing that the latter benefits more of the new ex-
tensions because 256-bit SIMD instructions naturally operate on rows of the function’s state.
They noted that XOP extensions are faster because they feature a native rotate instruction,
whereas one must use two shifts and a XOR to simulate a rotate with non-XOP instruction
sets (including AVX2).

BLAKE2b

BLAKE2 [ANWW13] is an improvement over BLAKE optimized for speed: the number of
rounds is smaller thanks to a large security margin in BLAKE, the “big” version BLAKE2b is
faster on 64-bit processors, and the choice of rotation constants allows better implementations
on Intel processors with SIMD instructions (a shuffle can be used to implement rotation by
a multiple of 8 bits). These choices make it one of the fastest hash functions for large inputs.

Haraka v2

In [KLMR16], Kölbl et al. presented Haraka v2, a hash function based on the AES permutation
that supports only inputs of 256 and 512 bits, for outputs of 256 bits. This restriction of the
domain allows a much simpler design than general-purpose hash functions, and optimized
implementations on processors supporting AES-NI instructions. This makes it one of the
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fastest hash functions on short inputs, and a good candidate to instantiate Merkle trees and
Winternitz OTS.

The authors propose a 5-round version offering second-preimage resistance, but suggest
that a 6-round version would be collision-resistant. The difference between versions 1 and 2
of Haraka is in the choice of constants, to avoid an attack by Jean that uses symmetries in
the AES permutation [Jea16].

Recent benchmarks by Kölbl suggest that Haraka is the fastest function to instantiate
SPHINCS, both on Intel and ARM CPUs [Kö17].

Simpira v2

Simpira [GM16] is another proposal based on AES. It is a family of permutations of variable
size (a multiple of 128 bits), based on generalized Feistel structures (GFS). The authors of
Simpira proposed various applications of these permutations, in particular one can construct
hash functions with a Davies-Meyer feed-forward [MvOV96, Section 9.4.1].

Other constructions

In [RED+08], Rohde et al. proposed two hash functions with respectively 128 and 256 bits
of output, based on the Matyas-Meyer-Oseas construction [MvOV96, Section 9.4.1] with a
block cipher such as AES. They show that on small inputs, these functions are faster than
general-purpose hash functions, because the block length is smaller. They also implemented
the Merkle signature scheme based on these functions on an embedded platform (8-bit AVR
microcontroller) and showed that signing time was comparable to ECDSA-160 and much
faster than RSA-2048, and verification was much faster than ECDSA and RSA. They did not
implement key generation on the microcontroller, as it was too costly.

However, their parameters are not suited for post-quantum security and they do not seem
faster than the more recent Haraka. Indeed, Haraka reduces the number of rounds and applies
the AES permutation directly without key schedule, whereas Rohde et al. use the full AES
block cipher.

A not-so-efficient construction

In 1990, Rompel [Rom90] proposed a generic method to transform “one-way functions”
into “one-way hash functions”. In modern terms, this means constructing second-preimage-
resistant functions from preimage-resistant functions. This work as often been cited as a proof
that one-way functions are sufficient to create signature schemes.

Rompel’s construction notably uses k-universal families of hash functions to operate the
transformation. It is however not practical, as the complexity to compute such a one-way hash
function is O(n8) where n is the number of bits in the output! For example, with n = 256
the complexity would be in the order of 264.
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Chapter 3

Improvements for stateless
hash-based signature schemes

SPHINCS [BHH+15] has shown that stateless hash-based signature schemes can be practical.
Signing is reasonably fast, verification is even much faster, and signature sizes are reasonable
yet still somewhat large compared to current pre-quantum signatures. SPHINCS signatures
are 41 KiB large, whereas ECDSA signatures take 70 bytes1 [Por13].

In this chapter, we propose improvements for stateless hash-based signature schemes. Our
goal is mainly to improve signature and public key sizes compared to SPHINCS, for similar
signing and verification times. We give further details for some of these improvements in the
following chapters. Based on these improvements, we propose a new signature scheme called
Gravity, for which we give a specification draft in Chapter 7.

3.1 PORS or PRNG to obtain a random subset

As we have seen, state-of-the-art few-time signature schemes are based on the hash to obtain
a random subset (HORS) construction. Yet, HORS was only partially studied, as only non-
adaptive attacks were considered by Reyzin and Reyzin [RR02]. In particular, we will see in
Chapter 4 that this textbook version of HORS is susceptible to adaptive attacks, that are
made even worse by the simplicity of HORS: take the output of a hash function and split
it into blocks to obtain a set of indices. Indeed, nothing prevents some of these indices to
collide, reducing the size of the obtained subset and decreasing the security.

Even though HORS shines by its simplicity and speed compared to more elaborate meth-
ods to obtain random subsets of guaranteed size, its speed is not critical in complex schemes
such as SPHINCS, for which WOTS and Merkle trees dominate the computational cost.
Hence, we propose a new construction using a PRNG to obtain a random subset, that we
call PORS. Instead of using a hash function, we seed a PRNG from the message (and salt)
and query it until we obtain a subset of k distinct indices (Figure 3.1). The computational
overhead is equivalent to a few additional hash evaluations, for a significant security increase.

In the case of SPHINCS, we also noticed that adversaries have full control over the selected
leaf in the hyper-tree. Instead, we propose to generate this leaf index with the PRNG, further

1over a 256-bit field and written in ASN.1 notation
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Figure 3.1: Comparison of the HORS and PORS constructions to obtain a random subset
from a message M and a salt R. In HORS (left), the hash function output is split into τ -bit
blocks that may collide. If the scheme is used in SPHINCS, the signer (or adversary!) provides
the leaf index i. In PORS (right), a PRNG is used to produce as many τ -bit numbers as
necessary, as well as the leaf index i if used in SPHINCS.

increasing the security level. This increased security margin allows to reduce the hyper-tree
height by 2 layers of WOTS, saving 4616 bytes. More details and a security analysis are
given in Chapter 4.

Remark In SPHINCS, the public salt R is computed by the signer as hash(salt||M) for
a secret salt. This means that if the message M is long, the signer needs to compute two
long hashes: R ← hash(salt||M) and the HORST subset as H(R,M). Instead, with PORS
we propose to compute a long hash m ← hash(M) and then two small hashes on m as
R← H(salt,m) and seed← H(R,m) as a seed for the PRNG. This halves the computational
overhead of signing long messages.

3.2 Secret key caching

XMSS [BDH11] is a signature scheme similar to SPHINCS, but with smaller signatures at the
expense of being stateful. For example, the XMSS-T variant [HRS16] produces signatures of
8.8 KiB for a capacity of 260 messages and 128 bits of quantum security.

The main difference is that the hyper-tree of SPHINCS is divided into many layers because
these trees have to be fully recomputed on-the-fly for each signature. On the contrary, XMSS
can benefit from efficient incremental algorithms to amortize the computational cost among
many signatures [JLMS03, Szy04, BDS08]. Consequently, SPHINCS authors proposed to
divide an hyper-tree of height 60 into 12 layers of Merkle trees, each of height 5, meaning that
there are 12 WOTS signatures to connect these layers. Hence, most of the size of SPHINCS
signatures is used by WOTS signatures, each containing ` = 67 hash values, i.e. 2144 bytes
per WOTS signature. In contrast, an authentication path in a Merkle tree of height 5 requires
only 5 hash values, i.e. 160 bytes.

However, we point out that the root layer of SPHINCS contains only one tree, which is
recomputed for every signature, independently of the selected path in the hyper-tree. Hence,
it seems natural for the signer to cache it during key generation, to save computation time
later. In that case, we can choose a much larger height for this root tree than the other
layers, because the cost of key generation is amortized among many signatures (up to 250
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Figure 3.2: Secret key caching. Triangles represent Merkle trees, black circles represent
WOTS signatures. In SPHINCS (left) the hyper-tree is simply made of equal-height trees.
With secret key caching (right), a large root Merkle tree is computed at key generation
(dashed triangle) and part of it is cached in the secret key (grey triangle). At signature time,
the relevant lower part of this root tree is recomputed, along with lower layers in the hyper
tree.

for SPHINCS), and in practice key generation does not have the same latency constraints as
signing. For the same hyper-tree height, this reduces the number of layers, which means less
WOTS per signature and smaller signatures.

For example, for a total hyper-tree height of 60, we can use a top layer of height 20,
and 8 other layers of height 5, saving 3 WOTS instances. In the top tree, the signer can
cache the first 15 levels (i.e. 216 − 1 hashes of 32 bytes) with 2 MiB of memory. Then, at
signature time, the signer regenerates the 8 lower layers and the bottom 5 levels of the top
layer (Figure 3.2). Compared to SPHINCS, this saves 201 hashes per signature, i.e. 6432
bytes. Besides, signature and verification are a little faster, due to less WOTS instances.

We point out that this method does not make the scheme stateful. Contrary to the state
of XMSS, our cache is static and not modified by the signing process. Further, the cache can
be recomputed on-demand from a small secret seed. This means that one can easily set-up
new signing machines by sending them the secret seed; there is no need to send the full cache.
Similarly, the cache need not be stored in persistent memory, it can be regenerated after a
reboot, a machine reinstallation, etc.

Last, parameters are easy to adapt to the user’s configuration. If the signing machine
is not powerful enough – e.g. an embedded device with low memory and power – a smaller
cache can be used. On the contrary, more powerful machines can use a larger cache to further
reduce signature size.

3.3 Removing redundancy in authentication paths

A significant part of the size of a SPHINCS signature is taken by a single HORST instance,
and in particular by k = 32 authentication paths in a HORST tree of height 16. SPHINCS
already shortened these authentication paths from length 16 to length 10 by including all
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nodes at level 6, as there is a lot of redundancy next to the root. In total, authentication
paths contain 384 values, i.e. 12288 bytes. Yet, on average most of the nodes at level 6 can
already be inferred from authentication paths, so there is still some redundancy. Besides, some
authentication paths may merge even below this threshold, introducing even more redundancy.

Instead, we propose to use a dynamic strategy to include only necessary values, in what
we call an authentication octopus. We study this construction in more details in Chapter 5,
and show that we can reduce the authentication set to 352 values in the worst case, and 324.3
values on average, i.e. saving at least 1024 bytes and on average 1909 bytes, compared to
SPHINCS.

Caveat We point out that an authentication octopus contains a variable number of values,
depending on the set of indices selected by HORS/PORS. Consequently, signatures do not
have a fixed size, and verifiers must take extra care to validate their inputs, e.g. to avoid
buffer overflows. An adversary could indeed corrupt the size of a signature blob so that it
differs from the logical size that corresponds to the selected indices.

Besides, a signer may be tempted to brute-force the input space (e.g. by cheating on
the salt of HORS/PORS) to obtain shorter signatures. This must not be done because the
security of HORS/PORS relies on uniform distribution of the selected indices.

3.4 Mask-less constructions

Recent versions of Merkle tree and Winternitz OTS constructions [DOTV08, Hül13] interleave
hash evaluations with masking: the public key contains a list of uniformly generated masks,
and each hash evaluation is preceded by XOR-ing a mask. The mask to select depends on
the location of this hash evaluation in the overall structure.

Although masking allows to relax security requirements to second-preimage-resistant func-
tions instead of collision-resistant functions, this reduction is less tight and security degrades
with the total number of hash evaluations in the construction (e.g. 2h for a Merkle tree of
height h). Besides, against quantum computers, collision resistance and second-preimage
resistance have the same generic security of O(2n/2) for n bits of output [Ber09].

Hence, we propose to remove masks in these constructions (Figure 3.3). This gives a sim-
pler design and slightly reduces the size of public keys – something to consider in the context
of certificate chains. In Chapter 6, we review proofs of security for mask-less constructions
relying on collision-resistant functions.

3.4.1 6-round Haraka

In [KLMR16], Kölbl et al. specified a 5-round version of Haraka v2 with second-preimage
resistance in mind. As mask-less constructions require collision-resistant hash functions, we
propose to use a 6-round version of Haraka. Indeed, no attack better than generic attacks is
known against the collision-resistance of 6-round Haraka [KLMR16].

Although Haraka was fully specified and implemented in its 5-round version only, we
straightforwardly extend the round constants for a 6-th round, using the same procedure.
Namely, if pi is the least significant bit of the i-th decimal digit of π, then the round j-th
constant is defined as:

RCj = p128j+128|| . . . ||p128j+1
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Figure 3.3: Mask-less hashing in Merkle trees. In the maskful construction (left), the hash
function H is assumed to be second-preimage-resistant. In the mask-less construction (right),
H is assumed to be collision-resistant.

We explicit here the 8 new constants thereby obtained; for the previous rounds the reader
is invited to refer to the specification of Haraka [KLMR16].

RC40 = 2ff372380de7d31e367e4778848f2ad2

RC41 = 08d95c6acf74be8bee36b135b73bd58f

RC42 = 5880f434c9d6ee9866ae1838a3743e4a

RC43 = 593023f0aefabd99d0fdf4c79a9369bd

RC44 = 329ae3d1eb606e6fa5cc637b6f1ecb2a

RC45 = e00207eb49e01594a4dc93d6cb7594ab

RC46 = 1caa0c4ff751c880942366a665208ef8

RC47 = 02f7f57fdb2dc1ddbd03239fe3e67e4a

3.5 Batch signing

Signing is a somewhat costly process, that can induce a non-negligible overhead when many
messages are signed. To amortize this computational cost, several batching methods have been
developed to speed it up when several messages are available at the same time (for various
recipients). Some methods leverage the algebraic structure of the signature scheme (e.g. RSA),
but others are more generic. We now give a brief overview of batch signing methods and then
show how they can bring a performance improvement to hash-based signatures, in terms of
speed as well as signature size.

3.5.1 Examples of batch signatures

In 1989, Fiat presented a batching method for RSA signatures [Fia89]. For a fixed modulus,
each message in a batch is assigned a distinct public exponent, such that these exponents
are relatively prime (and relatively prime to the multiplicative group order). This choice
allows to amortize the computational cost of private exponentiations throughout the batch.
Compared to regular RSA, the public exponent is not included in the public key but in each
signature. In short, this batching method heavily relies on the algebraic structure of RSA to
trade signature size for signing speed.
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Figure 3.4: Pavlovski’s batch signing [PB99]. A batch of messages M1, . . . ,Mi are hashed
together in a Merkle tree. The root of this tree is authenticated with an expensive signature
scheme.

In 1998, Bellare et al. presented a method for batch verification of modular exponentia-
tion [BGR98], which can be useful to verify certificate chains with modular-exponentiation-
based signatures (e.g. DSS), but also zero-knowledge proofs. Their batch verifier is proba-
bilistic, i.e. sometimes accepts batches containing an illegitimate signature. This method does
not claim strong unforgeability, but only existential unforgeability.

In 1999, Pavlovski et al. proposed a generic batch signing method [PB99]. The principle
is to gather all the messages that are signed at the same time, compute a Merkle tree from
their respective hashes and sign only the Merkle tree root with a traditional signature scheme.
Then, the signature of each message contains the signature of the Merkle tree root and the
authentication path for the corresponding message (Figure 3.4).

3.5.2 Application to hash-based signatures

In the context of hash-based signatures, batch signing has additional advantages. Indeed, we
recall that a limiting factor to the development of hash-based signatures is the total number
of messages that can be signed, as WOTS can only be used once and HORS/PORS can only
be used a few times. A way to increase the targeted number of signatures is to use a large
hyper-tree structure, as in XMSS and SPHINCS, but comes at the price of large signature
sizes.

With batch signing, the total number of messages signed can be reduced, and consequently
each signature can be made smaller. For example, one can define a signing period T (e.g.
a millisecond for TLS connections, a day for software updates), group all messages within
each period, and release a single signature at the end of the period. For a given use case, the
frequency of signatures T−1 is predictable and allows to adapt the signature parameters to the
life duration of a key pair. Further, such a scheme is still flexible and allows to occasionally
shorten a period (e.g. if an emergency security update must be issued before the end of the
day). We note that the precise signing period T is private to the signer, so there is no need
to synchronize clocks with recipients.

Batch signing also allows to allocate more computing power to each signature, because
this cost is amortized among many messages. Indeed, if N messages are signed in a period,
computing N signatures each in time t (without batching) takes the same resources as com-
puting 1 signature in time Nt (with batch signing). In the case of SPHINCS, this allows to
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increase the height of each layer in the hyper tree, hence reducing the total number of WOTS
signatures and the signature size.

Practical parameters

With a hyper-tree of height 60, SPHINCS authors targeted at most 250 messages per key pair,
arguing that it would take more than 30 years to exhaust a key at a rate of 220 messages per
second. Even for highly interactive environments, a period T of one millisecond reduces the
target to 240 signatures for more than 30 years per key pair, with 210 messages per batch.
The latency overhead of one millisecond seems acceptable, given that signing time is an order
of magnitude larger on a single CPU2.

With that in mind, the hyper-tree height of SPHINCS can be reduced by 10, hence re-
moving 2 layers of WOTS signatures, saving 144 hashes, or 4608 bytes. On the other hand,
the batching Merkle tree adds 10 authentication nodes per signature, i.e. 320 bytes. A batch
index must also be sent, for example on 2 bytes. Overall, batch signing saves 4286 bytes. The
height of internal Merkle trees can also be increased to save additional WOTS signatures.

Real-time deployment

Batch signing also offers advantages for highly interactive environments (e.g. TLS servers).
First, the marginal cost of signing an additional message in a given period is in the order
of a few hash evaluations, much faster than computing a full signature. Consequently, batch
signing can easily adapt to load variations by gathering more messages in a single Merkle tree,
which reduces the risk of denial-of-service attacks that flood the signer with messages.

Second, the overall memory footprint for a signer transmitting signatures to N recipients
is reduced to a single signature and a Merkle tree with N leaves, instead of N signatures.
Here again, the marginal memory cost of signing an additional message is in the order of a
few hashes, thwarting denial-of-service attacks.

Multi-authentication

Additionally, Pavlovski’s batch signing allows to authenticate a subset of the messages with
a single signature. Consider the case of a software repository with daily updates, where each
user wants a subset of the packages. After downloading the packages, they only need to fetch
one signature for the day and a Merkle authentication path for each package in their chosen
subset. They can even use an authentication octopus, as described in Section 5. This amortizes
the signature size compared to fetching a full signature for each package. The marginal cost
for authenticating an additional package is O(logN) where N is the total number of packages
in the repository.

3.6 Summary

We now summarize to which extent our proposals reduce signature size compared to SPHINCS.

2In the case of SPHINCS, signing takes around 50 million cycles [BHH+15]
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SPHINCS Gravity Gravity + batching

signature 41000
28043 (average)
28928 (worst)

19469 (average)
20354 (worst)

public key 1056 32 32

secret key 1088 64 64

secret cache 0 221 222

Table 3.1: Comparison of SPHINCS and Gravity signatures and keys sizes (bytes), for
similar computation times. These parameters are suitable for up to 250 signatures per key
pair.

• Secret key caching allows to remove 3 WOTS signatures (with 15 levels of cache), due
to a large Merkle tree at the top of the hyper-tree. This saves 201 hashes per signature,
i.e. 6432 bytes, at the expense of a 2 MiB cache.

• Deterministic leaf selection with our PORS construction increases the security level, so
2 layers of WOTS and their associated Merkle trees can be removed. This saves 144
hashes and a 64-bit index per signature, i.e. 4616 bytes.

• Batch signing with batches of 210 messages allows to remove 2 layers of WOTS and
their Merkle trees, and replace them by a batch Merkle tree below the signature. This
saves 134 hashes per signature but a 2-byte index must be included, so 4286 bytes are
saved. Additionally, the remaining 5 layers of Merkle trees each of height 5 can be
replaced by 3 layers of height 8 (and increasing the secret cache by one level), thanks to
amortization of the computation cost over many messages. This saves again 134 hashes
per signature, i.e. 4288 bytes.

• Octopus multi-authentication in the PORS tree saves 1909 bytes per signature on aver-
age, and 1024 bytes in the worst case.

• Mask-less constructions remove 32 masks, i.e. 1024 bytes in the public key and in the
secret key.

In total, 21531 bytes are saved on average in each signature, and 1024 bytes are removed
in the public key. These optimizations reduce signature size by more than half! Even in a
pessimistic scenario where batch signing is not applicable and the worst case is considered
in octopus authentication, at least 12072 bytes are saved in each signature. Table 3.1 sum-
marizes the size of signatures and keys for SPHINCS and Gravity. We give a more formal
specification draft for Gravity in Chapter 7.
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Chapter 4

Clarifying the subset-resilience
problem

In 2002, Reyzin and Reyzin [RR02] presented the HORS signature scheme, a few-time signa-
ture scheme based on the hash to obtain a random subset construction. This construction uses
a hash function to select a subset of a finite set; the signature is then derived from this subset.
The security of HORS relies on the subset-resilience of the hash function, a property defined
by Reyzin and Reyzin for the purpose of this scheme. Several signature schemes are vari-
ants of this idea, e.g. HORS++ [PWX03] and HORST [BHH+15]. The latter is an essential
building block of SPHINCS, a practical stateless hash-based signature scheme [BHH+15].

However, we note that the subset-resilience problem was only partially studied. In par-
ticular, although Reyzin and Reyzin proposed two security notions, to capture the security
against both adaptive and non-adaptive attacks, they only studied non-adaptive attacks. Yet,
nothing prevents adaptive attacks in the textbook version of HORS. In this chapter, we inves-
tigate adaptive attacks and show that the security level decreases dramatically when HORS
is used more than once. In particular, we propose a greedy algorithm that breaks textbook
HORS and we give examples of forgeries.

We also investigate the SPHINCS construction. Contrary to textbook HORS, SPHINCS
is not vulnerable to simple adaptive attacks, because the hash is unpredictable to attackers.
Yet, we show that both HORS and SPHINCS are susceptible to what we call weak messages
attacks, due to the way that HORS maps messages to subsets. Indeed, HORS maps some
messages to small subsets – due to index collisions in the output of the hash function –
and these small subsets are easier to cover. This yields an improved classical attack against
SPHINCS, of complexity 2270 instead of 2277. Yet, this new attack does not improve over
known quantum attacks, based on Grover’s search algorithm.

To mitigate these attacks, we propose the PORS construction – PRNG to obtain a random
subset – which has no weak messages. We show that this new construction increases the
security level for HORS and SPHINCS, against both classical and quantum attacks. Further,
in the case of SPHINCS, we extend PORS to also select the hyper-tree leaf, instead of having
this leaf freely chosen by a potential forger. We show that with this last improvement, the
security margin of SPHINCS increases to 171 bits (post-quantum). Consequently, we propose
smaller parameters for SPHINCS-PORS, to save 4616 bytes per signature.
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4.1 The subset-resilience problem

In this section, we recall known results about the subset-resilience problem.

4.1.1 General definitions

Given integer parameters k and τ such that 0 < k ≤ 2τ , we let t = 2τ and denote by T
the set {0, . . . , t − 1}. We denote by Pk(T ) the set of subsets of T of size at most k. We
consider a finite key space K, a message spaceM and a family of functions to obtain random
subsets (ORS) from messages On = {ORSK :M→ Pk(T )|K ∈ K}. Given a key K and r+ 1
messages M1, . . . ,Mr+1 we define the r-subsets-cover relation CK as:

CK(M1, . . . ,Mr+1)⇔ ORSK(Mr+1) ⊆
r⋃
j=1

ORSK(Mj)

which means that the image of Mr+1 by ORSK is covered by the images of M1, . . . ,Mr.

Hash to obtain a random subset

Unless specified otherwise, we restrict our analysis to function families On that follow the
hash to obtain a random subset (HORS) construction, that we now describe. Given a PRF
Hn = {HK : M → {0, 1}kτ |K ∈ K} that maps messages to kτ -bit strings, the associated
family On is constructed as follows. To compute ORSK(M), take the string x := HK(M),
split it into τ -bit blocks x1|| . . . ||xk := x and interpret each block xi as the encoding of a
number xi ∈ T . The result ORSK(M) is the subset split(x, k) := {x1, . . . , xk}.

We note that given a uniformly distributed key K and an arbitrary message M , the xi
are independent and uniformly distributed in T , because Hn is a PRF.

Once a subset is obtained, it can be turned into a signature with the scheme described in
Section 2.3.2.

Practical parameters

To give some intuition about the scheme, we recall practical choices of (k, t). For the original
HORS scheme, Reyzin and Reyzin proposed k = 20, t = 256 or k = 16, t = 1024. For HORST
as used in SPHINCS, Bernstein et al. proposed more conservative parameters k = 32, t = 216.

4.1.2 Subset-resilience

Informally, On is r-subset-resilient if it is hard for an adversary to find r + 1 messages that
form a r-subsets-cover, under a key uniformly chosen in K. Two adversarial scenarios were
considered by Reyzin and Reyzin [RR02]. In the adaptive scenario, an adversary is given a
key K and can compute ORSK on any messages before selecting the r + 1 messages. In the
non-adaptive scenario, also called target-subset-resilience (as it is a generalization of target-
collision-resistance [BR97]), the adversary must first select r messages, after which they are
given the key K to select the last message.

Formally, the definitions by Reyzin and Reyzin can be given in terms of adversarial ad-
vantage. We define the advantage of an adversary A against the r-subset-resilience property
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of On as:

Succr−SROn (A) = Pr
[
K

$← K; (M1, . . . ,Mr+1)← A(K) : CK(M1, . . . ,Mr+1)
]

where the probability is over the choice of K (uniform in the key space K) and the internal
coins of A.

Similarly, we define the advantage of an adversary A = (A1,A2) against the r-target-
subset-resilience of On as:

Succr−TSR
On (A) = Pr

[
M1, . . . ,Mr

$← A1;K
$← K;Mr+1 ← A2(K,M1, . . .Mr)

: CK(M1, . . . ,Mr+1)
]

Reyzin and Reyzin originally defined (target-)subset-resilience as negligibility of the ad-
vantage of probabilistic polynomial-time adversaries w.r.t. the variables (t, k), more precisely

as Succ
r−(T)SR
On (A) < negl(t, k). However, we argue that such asymptotic definitions have

little practical interest because for concrete schemes what matters is the security level for
some fixed (t, k). Also, they did not explicitly define negl(t, k), and for example an adversary
could easily generate a subsets-cover if t and k go to infinity with t = k. Last, in practice r is
not fixed and we are also interested in asymptotics in r, as in the case of SPHINCS. Instead,
we consider concrete notions of (in)security, with the framework defined in Section 1.1.1.

In our analysis, we consider only generic attacks against On. In practice, if a particular
family On has structural weaknesses that allow more efficient attacks, this family is considered
broken and one can replace it with another family O′n.

Note The HORST scheme [BHH+15] – for “HORS with trees” – simply adds a Merkle tree
on top of HORS to compress the public key. This is irrelevant to attacks against subset-
resilience, so unless otherwise specified the results in this chapter hold for both HORS and
HORST.

Previous results

Reyzin and Reyzin have already studied the non-adaptive scenario (target-subset-resilience).
They considered an adversary performing a brute-force attack, i.e. given M1, . . . ,Mr one
iterates Mr+1 over the message space until a match is found. In that case, given r + 1
arbitrary messages and a uniformly distributed key K, the probability that ORSK(Mr+1) is
covered by the first r messages is at most (kr/t)k. This is the probability that k elements
chosen uniformly at random in T are a subset of ∪rj=1ORSK(Mj), which contains at most kr
elements of T . In other words, the security level against this generic attack is:

k(log2 t− log2 k − log2 r)

In this chapter, we study the adaptive scenario and show that the security level decreases
much faster when r increases.

31



4.2 Adaptive attacks against subset-resilience

In this section, we give a new lower bound on the subset-resilience security level, assuming
only generic attacks against On. We show that compared to target-subset-resilience, the
(logarithmic) security level decreases by a factor proportional to r + 1.

Theorem 1. Assuming only generic attacks against On, we have the following bound on the
r-subset-resilience against adversaries performing at most q queries:

InSecr−SR(On; q) ≤ (q + r + 1)r+1

r!

(
kr

t

)k
Proof. Let A be an adversary against the subset-resilience property of On. Given a key K,
we assume that A makes q distinct (offline) queries to ORSK and outputs r+ 1 messages. We
construct an adversary A′ that runs A and additionally queries the r+ 1 messages output by
A, before outputting them. Adversary A′ has the same success probability as A and makes
at most q′ = q + r + 1 queries. We denote as (Mi,ORSK(Mi))1≤i≤q′ the q′ queries of A′.

Under these assumptions, the advantage of A′ is bounded by the probability that there
exists a permutation σ of {1, . . . , q′} yielding the following r-subsets-cover:

CK(Mσ(1), . . . ,Mσ(r+1))

Given a permutation σ, the probability that this condition holds is at most (kr/t)k, as in

the non-adaptive case. Besides, there are q′
(
q′−1
r

)
distinct configurations: each configuration is

given by a choice of σ(r+1) among q′ indices, followed by the choice of a subset {σ(1), . . . , σ(r)}
of r indices among the remaining q′ − 1. By a union bound over all configurations, we obtain
the following bound on the adversarial advantage.

Succr−SROn (A) = Succr−SROn (A′) ≤ q′
(
q′ − 1

r

)(
kr

t

)k
≤ q′r+1

r!

(
kr

t

)k
The result follows.

We note that for practical parameters (q � r2), we have the following approximation:

(q + r + 1)r+1

r!

(
kr

t

)k
≈ qr+1

r!

(
kr

t

)k
The associated security level corresponds to the number of queries necessary for the advantage
to be close to 1, that is:

k

r + 1
(log2 t− log2 k − log2 r) +

log2 r!

r + 1

≈ k

r + 1
(log2 t− log2 k − log2 r) + log2 r

As we can see, contrary to non-adaptive attacks, security degrades quickly with r due to
the denominator, in a birthday-like manner. The case r = 1 is similar to collision resistance.
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Universal forgeries

Although this goes beyond our definition of subset-resilience, we give a brief analysis of uni-
versal forgery. If the adversary wishes to make a universal forgery, the message Mσ(r+1) is

fixed. There are now
(
q′−1
r

)
configurations for σ and the success probability is bounded by:

q′r

r!

(
kr

t

)k
yielding a security level of:

≈ k

r
(log2 t− log2 k − log2 r) + log2 r

The case r = 1 is similar to second-preimage resistance.

4.3 Practical attacks against HORS

In the previous section, we gave conservative bounds by considering only whether a subsets-
cover exist, but we did not provide practical algorithms to find them. In particular, even
though a r-subsets-cover exists, a naive algorithm that iterates over all configurations σ would
take a time proportional to q

(
q−1
r

)
, introducing no improvement over a non-adaptive attack.

Hence, we look for faster algorithms to find subsets-covers.

4.3.1 Reduction to set cover

Given q messages and their hashes, finding a subsets-cover reduces to the set cover problem.
Indeed, for a given Mσ(r+1), we try to cover the set X = ORSK(Mσ(r+1)) with a cover C
of r elements from the family Y = {Yi}i 6=σ(r+1), where Yi = ORSK(Mi) ∩ X. Set cover is
an NP-complete decision problem; the associated optimization problem (finding the smallest
r) is NP-hard [Joh74, Fei98]. However, approximations can be computed with polynomial
complexity.

Greedy algorithm

Given a set X to be covered by a family Y, a simple heuristic is the following greedy algorithm.

1. Initialize an empty cover C ← ∅.

2. Select Ymax ∈ Y such that |Ymax| is maximal.

3. Add Ymax to the cover C.

4. Update X ← X \ Ymax and Y ← {Yi \ Ymax|Yi ∈ Y}, where A \ B denotes the set
difference.

5. Repeat steps 2-4 until C contains r subsets or X is empty.

6. If X = ∅, the algorithm succeeds and outputs C.

The worst-case complexity of this greedy algorithm is O(qr), much better than the naive
O(qr/r!). The question is now: depending on the parameters k, t, r, q, what is the success
probability of this algorithm?
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Previous work

In [Joh74], Johnson has shown that for the general set cover problem, this greedy algorithm
achieves an approximation ratio of log k in the worst case. This means that if there exists an
optimal cover Copt of r sets in Y, the greedy algorithm will find a cover of at most r log k sets.
Later, Feige [Fei98] showed that this greedy algorithm is essentially the best one can hope for
in the general case with probabilistic polynomial-time algorithms.

However, these results are for the worst-case scenario, where the family Y can be chosen in
an adversarial manner w.r.t. the algorithm. In our case, Y is chosen according to the HORS
construction, which yields a very specific probability distribution and we are interested in the
average approximation ratio, which may well be better than log k for the greedy algorithm –
and/or for other efficient algorithms.

Targeting weak messages

Instead of running the greedy algorithm on an arbitrary message, the adversary can select a
better target. Indeed, due to the HORS construction, some messages have an image by ORSK
that contain only κ < k elements. We call them weak messages. For example, following is the
SHA-256 of “88681”, grouped by blocks of 8 bits, with some repeated bytes underlined.

98 32 3d bf 2a 64 75 32 0f f6 64 7e 98 75 64 98 f6 f5 54 02 ...

Hence, we propose the following optimized algorithm: first scan through the q messages
to find M such that ORSK(M) has the least number of elements, then try to cover ORSK(M)
greedily. This new algorithm still has a complexity of O(qr) and its success probability can
be slightly better than the naive greedy algorithm.

To summarize, we have three algorithms:

• the greedy algorithm, that takes as input a set X to be covered by a family Y,

• the naive greedy algorithm, that takes as input messages M1, . . . ,Mq and applies
the greedy algorithm with an arbitrary X = ORSK(M1) and Y = {ORSK(Mj)|j 6= 1},

• the optimized greedy algorithm, that takes as input q messages and applies the
greedy algorithm with the smallest ORSK(Mi) as X, and Y = {ORSK(Mj)|j 6= i}.

Probability distribution of weak messages

We now give a useful combinatorics result about the distribution of weak messages.

Lemma 1. Let S(k, t, κ) be the probability that when we throw k balls independently and
uniformly into t bins, exactly κ bins are non-empty. Then we have the following equality:

S(k, t, κ) =
κ!

tk

(
t

κ

){
k

κ

}
where

{
k
κ

}
is the notation for Stirling numbers of the second kind.

The probability Pr[|ORSK(M)| = κ] that a message is mapped to exactly κ elements is
precisely S(k, t, κ). Figure 4.1 shows the evolution of log2 S(k, t, κ) for the choices of the
parameters (k, t) that were proposed for HORS [RR02] and SPHINCS [BHH+15].
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Figure 4.1: Evolution of S(k, t, κ) for various choices of (k, t). S(k, t, κ) is the probability that
when we throw k balls independently and uniformly into t bins, exactly κ bins are non-empty
(Lemma 1).

Proof. There are tk equiprobable combinations of k balls into t bins. Out of those, we count
the number of combinations for which exactly κ bins are non-empty:

• there are
(
t
κ

)
ways to choose κ bins out of t;

• there are
{
k
κ

}
partitions of k labelled balls into κ classes (this is precisely the definition

of Stirling numbers of the second kind);

• there are κ! ways to associate the κ classes of balls to the κ bins.

This yields the result.

4.3.2 Complexity analysis

We now give a complexity analysis of the greedy and optimized greedy algorithms, to estimate
the security level that one can obtain against this generic attack. Given ORS parameters
(k, t), a family Y of q elements, a number of iterations r and an initial subset X of size κ, we

denote by P k,tGreedy(κ, r, q) the success probability of the greedy algorithm. Given q queries, we

denote by P k,tGreedyNaive(r, q) the success probability of the naive greedy algorithm that takes

an arbitrary message as the initial subset X. We denote by P k,tGreedyOptim(r, q) the success
probability of the optimized greedy algorithm that selects the weakest of the q messages as
the initial subset X.

Naive greedy algorithm

We first establish a recurrence relation on P k,tGreedy(κ, r, q).
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Theorem 2. Given a target subset of κ elements, the success probability of the greedy algo-
rithm P k,tGreedy(κ, r, q) verifies the following recurrence relation.

P k,tGreedy(κ, r, q) =


1 if κ = 0

0 if κ > 0 ∧ (r = 0 ∨ q = 0)∑κ
`=1 Pr[|Ymax| = `|k, t, κ, q]P k,tGreedy(κ− `, r − 1, q − 1) if κ, r, q > 0

Proof. First, the greedy algorithm always succeeds if there is nothing to cover (κ = 0), and
always fails if there is something to cover (κ > 0) but there is no iteration or message left
(r = 0 or q = 0).

Second, if the first iteration finds a maximal subset of size `, the success probability of the
following iterations is equal to the success probability of the greedy algorithm on a subset of
size κ− ` with one less iteration and one less available message.

We now aim at evaluating the probability Pr[|Ymax| = `|k, t, κ, q] that the largest intersec-
tion |ORSK(M) ∩X| contains ` elements. We start with the following lemma.

Lemma 2. For 0 ≤ ` ≤ κ and M a message uniformly distributed in M, we denote by
P (k, t, κ, `) the probability that |ORSK(M) ∩ X| = ` given that |X| = κ. This probability is
equal to:

P (k, t, κ, `) =

k∑
λ=`

B
(
λ, k,

κ

t

)
S(λ, κ, `)

where S is defined in Lemma 1 and B(λ, k, p) is the binomial distribution:

B(λ, k, p) =

(
k

λ

)
pλ(1− p)k−λ

Proof. We recall that ORSK(·) simulates throwing k balls uniformly and independently into
t bins. With that in mind, B(λ, k, κ/t) is the probability that λ balls out of k fall into the κ
elements of X. Then, S(λ, κ, `) is the probability that these λ balls cover exactly ` bins out
of κ.

The sum starts at λ = ` because S(λ, κ, `) = 0 when λ < ` (it is impossible to cover ` bins
with less than ` balls).

We can now relate Pr[|Ymax| = `|k, t, κ, q] to P (k, t, κ, `).

Lemma 3. We have the following equality:

Pr[|Ymax| ≥ `|k, t, κ, q] = 1−

(
`−1∑
λ=0

P (k, t, κ, λ)

)q
Proof. By independence of the Yj :

Pr[|Ymax| ≥ `|k, t, κ, q] = Pr[∃j ∈ {1, . . . , q} |Yj | ≥ `|k, t, κ]

= 1− Pr[∀j ∈ {1, . . . , q} |Yj | < `|k, t, κ]

= 1−
q∏
j=1

Pr[|Yj | < `|k, t, κ]

= 1− Pr[|Y1| < `|k, t, κ]q
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where

Pr[|Y1| < `|k, t, κ] =

`−1∑
λ=0

P (k, t, κ, λ)

The result follows.

Corollary 1. We can then compute Pr[|Ymax| = `|k, t, κ, q] as:

Pr[|Ymax| = `|k, t, κ, q] = Pr[|Ymax| ≥ `|k, t, κ, q]− Pr[|Ymax| ≥ `+ 1|k, t, κ, q]

Although finding a more explicit analytic formula seems challenging, Theorem 2 and Lem-
mas 2 and 3 allow to compute P k,tGreedy(κ, r, q) by dynamic programming for concrete values of
the parameters.

We can now estimate the success probability of the naive algorithm.

Theorem 3. The success probability of the naive greedy algorithm is equal to:

P k,tGreedyNaive(r, q) =
k∑

κ=1

S(k, t, κ)P k,tGreedy(κ, r, q − 1)

Proof. The naive algorithm selects an arbitrary message, that has a probability S(k, t, κ) of

containing κ distinct elements. Given that, there is a probability P k,tGreedy(κ, r, q − 1) that the
algorithm succeeds.

Optimized greedy algorithm

We now relate the success probability of the optimized greedy algorithm to the success prob-
ability of the greedy algorithm.

Theorem 4. The success probability of the optimized greedy algorithm is equal to:

P k,tGreedyOptim(r, q) =
k∑

κ=1

Pr[|Ymin| = κ|k, t, q]P k,tGreedy(κ, r, q − 1)

where |Ymin| is the size of the weakest message:

|Ymin| = min
Y ∈Y
|Y |

Proof. For 1 ≤ κ ≤ k, there is a probability Pr[|Ymin| = κ|k, t, q] that the weakest message
found by the algorithm contains κ distinct elements. Given that, the algorithm succeeds with
probability P k,tGreedy(κ, r, q − 1).

We now relate Pr[|Ymin| = κ|k, t, q] to S(k, t, κ).

Lemma 4. We have the following equality:

Pr[|Ymin| ≤ κ|k, t, q] = 1−

(
k∑

λ=κ+1

S(k, t, λ)

)q
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Proof. The proof is similar to Lemma 3. By independence of the Yj :

Pr[|Ymin| ≤ κ|k, t, q] = Pr[∃j ∈ {1, . . . , q} |Yj | ≤ κ|k, t]
= 1− Pr[∀j ∈ {1, . . . , q} |Yj | > κ|k, t]
= 1− Pr[|Y1| > κ|k, t]q

Besides,

Pr[|Y1| > κ|k, t] =

k∑
λ=κ+1

S(k, t, λ)

which yields the result.

Corollary 2. We can then compute Pr[|Ymin| = κ|k, t, q] as:

Pr[|Ymin| = κ|k, t, q] = Pr[|Ymin| ≤ κ|k, t, q]− Pr[|Ymin| ≤ κ− 1|k, t, q]

Theorem 4 and Lemma 4 allow to compute P k,tGreedyOptim(r, q).

Practical security level

In the previous section, we studied how to compute the success probability of the naive and
optimized greedy algorithms. We now reduce the complexity of these attacks to these success
probabilities.

Given q queries and a target r, the naive greedy algorithm has a complexity proportional
to 1+r(q−1) (one query for the covered message and r iterations over the q−1 other queries)

and a success probability of P k,tGreedyNaive(k, r, q), so we expect to repeat it 1/P k,tGreedyNaive(k, r, q)
times on average to obtain a r-subsets-cover. The optimal number of queries q is the one that
minimizes the attack complexity:

1 + r(q − 1)

P k,tGreedyNaive(k, r, q)

Likewise, given q and r, the optimized greedy algorithm has a complexity proportional
to q + r(q − 1) (q queries to find the weakest message and r iterations over the remaining

q − 1 queries to cover it) and a success probability of P k,tGreedyOptim(r, q). The optimal number
of queries q is the one that minimizes the attack complexity:

q + r(q − 1)

P k,tGreedyOptim(r, q)

We estimated these attack complexities by taking the minimum over q ∈ {2n|n ∈ N}.
Figure 4.2 shows a comparison of the lower bounds on adaptive and non-adaptive attacks,
and the complexity of the naive and optimized greedy algorithms, for some of the parameters
originally proposed for HORS (k = 16, t = 1024). We can see that the optimized greedy
algorithm is very close to the lower bound on adaptive attacks, despite its simplicity. Also,
the difference between the naive and optimized algorithms becomes small as r grows.
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Figure 4.2: Security level for k = 16, t = 1024. Lower bounds for adaptive and non-adaptive
attacks and complexity of naive and optimized greedy algorithms.

4.3.3 Forgeries on textbook HORS

In [RR02], Reyzin and Reyzin proposed several combinations of (k, t) for the HORS signature
scheme: k = 20, t = 256 and k = 16, t = 1024. Considering only non-adaptive attacks, they
claimed a security level of 53 bits in the first case with r = 2 signatures and 64 bits in the
second case with r = 4 signatures. We challenge these claims in the case of adaptive attacks –
which are totally possible in this textbook version of HORS – and give forgeries for these sets
of parameters. We computed these forgeries with the optimized greedy algorithm.

Reyzin and Reyzin originally proposed to instantiateOn with a hash function such as SHA-
1, but given that this function is not collision-resistant [SBK+17] we used SHA-256 instead for
our proof-of-concept attack, trimming the output to 160 bits to obtain compatible parameters.
In other words, we used ORSK(·) = split(trim(SHA-256(·), 160), k) where trim(·, 160) returns
the first 160 bits of its input, and split groups the output in blocks of k bits. We limited
ourselves to q = 222 queries, with each query Mi being the decimal representation of i as an
ASCII string.

First case k = 20, t = 256 With only q = 221 queries, we found a 2-subsets-cover with the
optimized greedy algorithm (Table 4.1). This is much smaller than the advertised security
level of 53 bits against non-adaptive attacks [RR02], and a little larger than our adaptive lower
bound of 18.1 bits estimated in Section 4.2. We note that the target subset ORSK(M88681)
contains only κ = 13 distinct elements.

Second case k = 16, t = 1024 With only q = 222 queries, we found a 3-subsets-cover with
the optimized greedy algorithm (Table 4.2). This is much smaller than the advertised security
level of 70 bits against non-adaptive attacks [RR02], and a little larger than our adaptive lower
bound of 18.3 bits estimated in Section 4.2. The target subset ORSK(M88817) contains only
κ = 12 distinct elements.
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i 160 first bits of SHA-256(i) (by groups of 8 bits)

88681 98 32 3d bf 2a 64 75 32 0f f6 64 7e 98 75 64 98 f6 f5 54 02

1468639 54 7e 64 39 f6 61 1f 4d 02 32 3d 23 68 62 9d 3e 38 bc 75 5c

80937 4b 98 e7 f5 05 9b ee 8d f4 0f 89 bb 13 7e bf 08 89 fc be 2a

Table 4.1: Example of 2-subsets-cover for k = 20, t = 256. The first line is the covered
message. Underlined blocks are repeated in the same line. Colored blocks are common to
several lines.

i 160 first bits of SHA-256(i) (by groups of 10 bits)

88817 3f0 2b4 193 087 38c 1e0 2b4 193 1b6 116 1c1 087 046 33a 243 243

2530852 1a9 2c6 1a2 0fe 15f 279 33a 026 2b4 3e6 2a9 116 09f 087 111 3f0

2351182 00e 02a 39c 243 292 378 152 22c 201 0ab 06d 1b6 1ff 204 1e0 1c1

216522 277 38c 06d 39c 193 124 376 2a9 08a 046 351 2df 072 219 34e 1fe

Table 4.2: Example of 3-subsets-cover for k = 16, t = 1024.

We also found a 4-subsets-cover with 217 queries, again much smaller than the advertised
64 bits of security (our adaptive lower bound is 13.7 bits in this case).

4.4 Application to SPHINCS

We now study attacks against subset-resilience in the context of the SPHINCS construction.
At first glance, SPHINCS is not susceptible to adaptive attacks, because the signer selects
for each message Mi a key Ki in a manner non-predictable by an adversary. More precisely,
Ki = hash(salt,M) where salt is a secret value known only by the signer. That way, an
adversary cannot compute subsets-covers in advance; they have to first query the signatures
of some messages and then try to find a key-message pair (K ′,M ′) such that ORSK′(M

′) is
covered by the previous signatures.

However, the SPHINCS construction uses N = 2h instances of HORST in parallel (typi-
cally 260). For each query, the signer also selects a HORST instance i in a deterministic but
non-predictable manner. The problem is then different than target-subset-resilience because
an adversary can attack multiple instances in parallel. In particular, although looking for
weak messages does not seem to help to break a single HORST instance in a non-adaptive
attack, this can provide a speed-up for the multi-target scenario.

The adversary can also focus on a HORST instance of their choice, a strategy outlined in
the original analysis of SPHINCS [BHH+15].

Search strategies

More formally, we let M = K ×M (the extended message space that also includes the ORS
key). Given q known signatures, the goal of an adversary is to find a pair (i, (K,M)) ∈
{1, . . . , N} ×M such that ORSK(M) is covered by the known subsets of the i-th HORST
instance. A naive strategy is to brute-force over the full space {1, . . . , N} ×M.
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However, each dimension of the search space {1, . . . , N}×M has weaknesses. On the one
hand, we have already seen that M contains weak messages. On the other hand, {1, . . . , N}
has weak HORST instances: the ones that produced many signatures. A more clever strategy,
outlined in the SPHINCS paper [BHH+15] is to focus on weak HORST instances and try to
find matching messages for these instances – via classical brute-force over the message space
or Grover’s quantum search algorithm. A symmetric strategy is to look for weak messages –
via brute-force or Grover’s algorithm – and try to find matching HORST instances. We now
evaluate the complexity of each strategy.

Naive search

We let ρ = q/N be the ratio of the number of queries by the number of HORST instances.
Given an arbitrary pair (i,M) ∈ {1, . . . , N}×M, the probability Pρ(r) that r messages were
signed with the i-th HORST instance can be approximated by a Poisson distribution, as
shown in [BHH+15].

Pρ(r) ≈ e−ρρr/r!

Then, the probability that ORSK(M) is covered by this instance is at most (kr/t)k – a
tight approximation if kr � t. Hence, the success probability for the pair (i,M) is at most:

∞∑
r=0

Pρ(r)

(
kr

t

)k
=

(
k

t

)k ∞∑
r=0

Pρ(r)r
k

The last sum corresponds to the k-th moment of a Poisson distribution and is equal to a
Touchard polynomial Tk [Rio37].

∞∑
r=0

Pρ(r)r
k = Tk(ρ) :=

k∑
i=0

{
k

i

}
ρi

Hence, the classical complexity to obtain a forgery with this strategy is (in bits):

k(log2 t− log2 k)− log2 Tk(ρ)

With SPHINCS parameters (k = 32, t = 216, ρ = 2−10), we obtain a classical complexity
of 331 bits for this naive attack.

Quantum naive search

Given a quantum computer, one could use Grover’s search algorithm, dividing by 2 the bit
complexity.

However, this is neglecting memory access costs! Indeed, given a function F : X 7→ {0, 1}
such that Pr[x

$← X : F (x) = 1] = 2−b, Grover’s algorithm can find a preimage x ∈ F−1(1)
with Θ(2b/2f) quantum operations on Θ(f) qubits where f is the cost of evaluating F [Gro96].
For the naive algorithm we consider X = {1, . . . , N}×M and b = 331 as shown in the previous
section.

In our case, F must first compute ORSK(M) and then compare this result to the q queries,
outputting 1 if and only if a subsets-cover is found. While evaluating ORSK(M) is somewhat
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cheap, the comparison circuit to a large database of q queries is expensive. In particular, one
cannot use classical algorithms that perform conditional memory access such as binary search,
because the quantum comparison circuit operates on a quantum superposition of values (and
each value would need to access distinct parts of the memory).

In practice, a quantum straight-line comparison circuit would need Θ(q) operations on
Θ(q) qubits [Ber09]. Besides, communication costs must be taken into account in a real-
istic model of memory access, e.g. random access in a 2-dimensional table of size q takes
time Θ(

√
q). These remarks are similar to the analysis of quantum collision search by Bern-

stein [Ber09].

With SPHINCS parameters (k = 32, t = 216, h = 60) and q = 250, we obtain a quantum
complexity of 215 bits, assuming an evaluation cost f = q, but we will see that more clever
methods reduce memory costs and achieve better results.

Search over weak HORST instances

To speed up the search, one can focus on the weakest HORST instance i – found in time
Θ(q) – and then look for messages M ∈ M. For a given r, the probability that there exists
an instance i that signed r messages can be approximated as (assuming ρ� 1):

1− (1− Pρ(r))2h ≈ 1− exp(−2hPρ(r)) . min{1, 2hPρ(r)}

Then, the success probability for each message M is again close to (kr/t)k. It follows that
the classical complexity of this attack is (in bits):

min
r

[
k(log2 t− log2 k − log2 r) + max

{
0, −h− log2 Pρ(r)

}]
One can also use Grover’s search algorithm over M. Contrary to the naive algorithm,

memory access is limited to the selected HORST instance, so we neglect memory costs. The
associated quantum complexity is:

min
r

[k
2

(log2 t− log2 k − log2 r) + max
{

0, −h− log2 Pρ(r)
}]

With SPHINCS parameters (k = 32, t = 216, h = 60) and q = 250, we find a classical
complexity of 277 bits and a quantum complexity of 138 bits, both for r = 5. This is in
accordance with the SPHINCS paper [BHH+15].

Worldwide attack An interesting question is whether one can benefit from this strategy
to break any SPHINCS instance in the world. Indeed, if there are u SPHINCS instances,
each containing 2h HORST instances, and that each SPHINCS instance is used for at most
q queries, then the probability that at least one HORST instance in the world was used for r
messages is:

1− (1− Pρ(r))2hu

The previous analysis can be adapted by replacing 2h by 2hu. For example, if u = 240,
this worldwide attack has a classical complexity of 256 bits and a quantum complexity of 128
bits (both for r = 8).
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Search over weak messages

With a classical computer, an adversary can find a weak message of size κ in time Θ(1/S(k, t, κ)).
With a quantum computer, this can be reduced to Θ(

√
1/S(k, t, κ)) with Grover’s search al-

gorithm.

Once a weak message M of subset size κ is found, it is covered by each HORST instance
with probability ≈ (kr/t)κ, where r is the number of signatures already generated by this
instance. The success probability of this message against any HORST instance is then:

∞∑
r=0

Pρ(r)

(
kr

t

)κ
=

(
k

t

)κ
Tκ(ρ)

If the adversary only scans through the ≈ q = 2hρ HORST instances that have already
been used to sign messages, the success probability for each instance increases to:

1

1− Pρ(0)

(
k

t

)κ
Tκ(ρ) ≈ ρ−1

(
k

t

)κ
Tκ(ρ)

Each weak message M is processed with complexity Θ(max{q, 1/S(k, t, κ)}) and is suc-
cessful with approximate probability:

1− exp(−2h(k/t)κTκ(ρ)) . min{1, 2h(k/t)κTκ(ρ)}

It follows that the classical complexity of this attack is (in bits):

min
κ

[
max

{
0, κ(log2 t− log2 k)− log2 Tκ(ρ)− h

}
+ max

{
h+ log2 ρ, − log2 S(k, t, κ)

}]
One can also use Grover’s search algorithm over M, yielding a quantum complexity of:

min
κ

[
max

{
0, κ(log2 t− log2 k)− log2 Tκ(ρ)− h

}
+ max

{
h+ log2 ρ,

− log2 S(k, t, κ)

2

}]
With SPHINCS parameters (k = 32, t = 216, h = 60) and q = 250, we find a classical

complexity of 270 bits (for κ = 26) and a quantum complexity of 187 bits (for κ = 5).
Compared to search over weak HORST instances, this attack is more efficient classically, but
less efficient quantumly.

4.5 Fixing HORS: PRNG to obtain a random subset

As we have seen, the existence of weak messages for On allows to perform more efficient
attacks. We propose to improve the HORS construction to remove weak messages and mitigate
these attacks. Instead of splitting the output of a hash function into k possibly non-unique
indices, we propose to use a PRNG and collect the first k distinct values.

We then extend this construction to also select the hyper-tree leaf in SPHINCS, and show
that this improvement increases the security level of SPHINCS by a significant margin.
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4.5.1 PORS construction

Given a PRF Hn = {HK : M → {0, 1}n|K ∈ K} that maps messages to n-bit strings, and
a PRNG G that expands a n-bit seed into an arbitrary long stream of bits, we consider the
following PRNG to obtain a random subset construction. Given a key K and a message M ,
we let seed = HK(M). We define the sequence (xi)i>0 computed by grouping the output of
the PRNG by blocks of τ bits, i.e. x1||x2|| . . . = G(seed). We then define ORSK(M) as the set
containing the first k distinct values of (xi)i>0.

Soundness of the construction

Since G is a PRNG, the xi are indistinguishable from independent random elements uniformly
chosen in {0, 1}τ . Collecting k distinct elements among t is a variant of the coupon’s collector
problem, and succeeds in an average of t(Ht −Ht−k) ≈ k steps, where Hn ≈ log n is the n-th
harmonic number.

Besides, an upper bound of the failure probability after T steps is:

Pr[failure|k, t, T ] ≤
(
T

k−

)(
k−

t

)T−k−
≤ T k

−

k−!

(
k−

t

)T−k−
where k− = k − 1

Indeed, coupon collection fails after T steps if there are at least T − k− steps for which the
obtained coupon is not new. There are

(
T
k−

)
choices for the T − k− failing steps, and each

failing step happens with probability at most k−/t.

This failure probability decreases exponentially with T and in practice a small number of
steps is enough. For example, with SPHINCS parameters (k = 32, t = 216), the failure proba-
bility is less than 2−128 after T = 47 steps, i.e. the values x1, . . . , x47 are enough with very high
probability. It follows that the PRNG introduces a negligible overhead compared to HORS.
This computational overhead is comparable to few hash function evaluations on small inputs,
when SPHINCS signing requires hundreds of thousands of hash function calls [BHH+15].

Comparison to other algorithms

Other algorithms [BC92, RR02] have been proposed to generate k distinct elements among
T , but they are not as simple and practical. First, they take as input an integer uniformly
distributed between 0 (inclusive) and

(
t
k

)
(exclusive), which is non-trivial because

(
t
k

)
is in

general not a power of 2. Second, they require arithmetic operations on large integers up to(
t
k

)
, i.e. 395-bit integers for SPHINCS parameters (k = 32, t = 216). Consequently, Reyzin

and Reyzin’s algorithm has a complexity of O(k2 log t log k) [RR02]. In contrast, our PORS
construction has an average complexity of O(k) for k � t. Indeed, we need to generate
approximately k values and we can test if each value is new in O(1) (e.g. with a hash table).

Besides, PORS offers greater flexibility on the choice of k, whereas HORS constrains it to
k = n/ log2 t. PORS can also be used to generate auxiliary data, as we will see in the case of
SPHINCS.
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Security

A non-adaptive adversary performing a brute-force attack against PORS has at most the
following success probability for each message.

(kr)!

(kr − k)!

(t− k)!

t!
=
kr

t
· kr − 1

t− 1
· · · kr − k + 1

t− k + 1

This corresponds to the probability that k distinct values uniformly distributed in a set of
size t all fall into a subset of size kr. This is lower than the success probability bound against
HORS, and the associated security level increases to:

k−1∑
j=0

log2(t− j)− log2(kr − j) ≥ k(log2 t− log2(kr))

The difference in security is especially large when r is small. For example, with SPHINCS
parameters (k = 32, t = 216) and r = 1:

− log2

[(
kr

t

)k]
= 352 − log2

[
(kr)!

(kr − k)!

(t− k)!

t!

]
≈ 394

Application to SPHINCS

If we apply the PORS construction to SPHINCS, the best attack of Section 4.4 (search over
weak HORST instances) has an increased complexity, namely:

min
r

[
α

k−1∑
j=0

log2(t− j)− log2(kr − j)

+ max
{

0, −h− log2 Pρ(r)
}]

where α = 1 in the classical case and 1/2 in the quantum case. We obtain 282 bits of classical
complexity and 141 bits of quantum complexity (both for r = 5).

The naive search attack also has an increased complexity by a few bits, and is still non-
competitive. The attack against weak messages (Section 4.4) does not apply to PORS, because
there are no weak messages.

4.5.2 SPHINCS leaf selection

As we saw in Section 4.4, SPHINCS suffers from attacks against weak HORST instances.
Indeed, even though a honest signer deterministically selects a HORST leaf as a function of
the message, a potential forger has full control over this choice because the leaf index is part
of the signature. To reduce the attack surface, we propose to extend PORS to also generate
this index.

More precisely, to generate a h-bit index i – for a hyper-tree of size 2h – one can use
the first h bits of PORS’s PRNG. Namely, we compute i||x1||x2|| . . . = G(seed) where seed is
obtained from the message as before. A schematic comparison of textbook SPHINCS and our
new construction is shown on Figure 4.3.

We note that our construction also improves flexibility, because h and k are not constrained
by the output size of a hash function.
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Original SPHINCS with HORST

proc GenPrivKey(1n)

salt
$← Bn

proc Sign(M)
R||i← hash(salt,M)
x1|| . . . ||xk ← split(hash(R,M))
σ ← sign(i, x1, . . . , xk)
return (R, i, σ)

proc Verify(M,R, i, σ)
x1|| . . . ||xk ← split(hash(R,M))
return verify(σ, i, x1, . . . , xk)

SPHINCS with PORST and leaf selection

proc GenPrivKey(1n)

salt
$← Bn

proc Sign(M)
R← hash(salt,M)
i||x1||x2|| . . .← G(hash(R,M))
σ ← sign(i, uniquek(x1, x2, . . .))
return (R, σ)

proc Verify(M,R, σ)
i||x1||x2|| . . .← G(hash(R,M))
return verify(σ, i, uniquek(x1, x2, . . .))

Figure 4.3: Simplified comparison of HORST and PORST in SPHINCS.

Increased security level

With this new construction, attacks targeting a single weak PORST instance have a much
higher complexity. The success probability for each message is divided by 2h, so the classical
complexity increases by h bits, and the quantum complexity by h/2 bits (for Grover-like at-
tacks). Applied to SPHINCS, the classical complexity is 342 bits and the quantum complexity
is 171 bits.

Naive attacks become more efficient in the classical case, with 337 bits of complexity.
Intuitively, targeting a single PORST instance is not worth it because the probability to hit
it is too low. However, quantum naive search is not competitive, due to memory access and
comparison costs, so targeting a single weak PORST instance is still the best strategy.

Overall, replacing HORST by PORST with leaf selection in SPHINCS yields a gain of 67
bits of classical security (from 270 to 337) and 33 bits of post-quantum security (from 138 to
171). As a side effect, removing the leaf index from the signature also saves 8 bytes.

Revised parameters for SPHINCS

Thanks to the better security margin offered by PORST, we propose to decrease SPHINCS
parameters to reduce signature size. For an equivalent number of queries q = 250 and similar
signature times, we propose to reduce the total height to h = 50, divided into d = 10 layers of
Merkle trees (each of height 5 as in SPHINCS). Signatures for SPHINCS-PORST have a size
of 36384 bytes instead of 41000 bytes for textbook SPHINCS, due to the removal of 2 layers
of Merkle trees (and of the leaf index).

The corresponding security level is 267 bits classical (naive search) and 136 bits post-
quantum (search on weak HORST instance), similar to the original SPHINCS. For a slight
improvement, one can also choose to reduce k to 29 instead of 32 to save 1152 more bytes,
with 128 bits of post-quantum security.

The total height h can be reduced if the total number of signatures q is smaller, and the
number of layers d can be decreased if more computation time is allotted to each signature.
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Chapter 5

Octopus: optimal
multi-authentication in Merkle trees

Merkle trees [Mer89] are an efficient method to authenticate many values under a small public
key consisting of a single hash. With a balanced binary tree, one can authenticate a leaf by
revealing an authentication path containing at most dlog2Ne hashes, where N is the number
of leaves, and it is easy to show that this construction is optimal.

Yet, in practice one may be interested in authenticating multiple leaves at the same time.
This is for example the case in HORST (or PORST), where several values are revealed by
the signer. This can also be useful for batch signing; for example one can think of a software
repository where each leaf is the hash of a package, and each user subscribes to a set of
packages: Alice is interested in updates for a web browser and an image manipulation program,
while Bob is interested in a media player and a word processor.

In this multi-authentication scenario, authenticating k leaves can be done by using k
full authentication paths. However, this method is suboptimal, as the paths may overlap,
especially next to the root. We can visualize this set of paths from leaves to the root as an
octopus, with long tentacles that merge close to the root (Figure 5.1). Of course, the shape
of this octopus is not fixed but depends on the distribution of leaves to authenticate. If one
wants to authenticate k consecutive leaves, the shape is more like a broom, but this extreme
case is unlikely when the selected leaves are uniformly distributed.

In SPHINCS [BHH+15], Bernstein et al. proposed an optimization by choosing a threshold
level x and only reveal the authentication paths up to this level, additionally revealing all nodes
at level x. This removes kx−2x hash values from the authentication, hence the optimal choice
is x ≈ log2(k/ ln(2)) (with the additional constraint that x must be an integer). However,
this does not remove all redundancy, as most nodes at level x can already be inferred from
the k paths and some paths may merge below the threshold.

In this chapter, we study the problem of minimal octopus authentication, i.e. how many
values need to be revealed to authenticate k distinct leaves in a Merkle tree of height h,
assuming that the selected leaves are uniformly distributed? We show that only h − log2 k
values need to be revealed in the best case, and k(h − log2 k) values in the worst case. We
also derive a recurrence relation to compute the average number of values, and apply it to the
parameters proposed in SPHINCS (k = 32, h = 16). We conclude that octopus authentication
saves 1909 bytes on average for SPHINCS signatures, and 1024 bytes in the worst case.
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Figure 5.1: Authentication octopus. The leaves in black are the set to authenticate. The
nodes in dark grey are revealed in the signature and form the authentication octopus. The
nodes in light grey are computed by the verifier to obtain and verify the root.

5.1 Algorithm

We first give an algorithm to compute the optimal set of authentication nodes for a given
set of leaf indices. This algorithm can easily be adapted to derive signing and verification
algorithms. The algorithm works as described on Figure 5.2.

We start from a set of leaf indices, with the convention that we count indices from 0
to 2h − 1, from left to right. The algorithm first sorts this set to facilitate identification of
siblings. Then, for each level of the Merkle tree, in a bottom-up order, the algorithm converts
the sequence of indices to authenticate at level `+ 1 into a sequence of authentication nodes
at level `+ 1 and a sequence of indices to authenticate at level ` (Figure 5.3).

More precisely, at a given level, for each index we add its parent to the list of indices at
the upper level. We then compute the index of its sibling, by flipping the least significant bit.
If the next index to authenticate happens to be the sibling, then we skip the sibling, to avoid
adding their common parent twice. Otherwise, we add the sibling to the list of authentication
nodes. Because the list of indices is always sorted in increasing order, checking the next index
is sufficient to identify siblings.

5.2 Best and worst cases

To analyze the extreme cases, we can rephrase the problem as follows. Starting from k
tentacles (i.e. authentication paths) at the bottom of the tree, we obtain a single root. This
means that there must be k − 1 merges in the octopus. We can now analyze each merge
individually.

First, we note that if two tentacles merge at level `, they have identical authentication
nodes between level ` and the root. Besides, their authentication nodes at level ` + 1 are
mutual siblings, hence redundant. This means that if a merge occurs at level ` then ` + 2
authentication nodes are redundant (Figure 5.4). To count the total number of redundant
nodes in an octopus, we can simply add the redundant nodes of each merge. Indeed, we can
construct an octopus by successively adding tentacles; each new tentacle merges at some level
` and saves `+ 2 nodes.

In the best case, all merges are close to the leaves, whereas in the worst case all merges
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proc Octopus([x1, . . . , xk], h)
Indices← sorted([x1, . . . , xk])
Auth← []
for ` = h− 1 down to 0

NewIndices← []
j ← 0
while j < Indices.length()

x← Indices[j]
NewIndices.append(bx/2c)
sibling ← x⊕ 1
if j + 1 < Indices.length() ∧ Indices[j + 1] = sibling

j ← j + 1
else

Auth.append((`+ 1, sibling))
j ← j + 1

Indices← NewIndices
return Auth

Figure 5.2: Algorithm to compute the optimal authentication octopus. The inputs are the list
of leaf indices to authenticate and the Merkle tree height; the result is the list of authentication
nodes. Each authentication node contains a level 0 ≤ ` ≤ h and an index 0 ≤ i < 2`. The
sorted() function takes as input a list of integers and this list sorted in increasing order.

level `

level `+ 1

Figure 5.3: One iteration of the optimal octopus algorithm. Starting form a set of nodes to
authenticate at level ` + 1 (black), an iteration computes the set of authentication nodes at
level ` + 1 (dark grey), and the set of nodes to authenticate at level `, by identification of
siblings.
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level 0

level `

Figure 5.4: Merging of two tentacles at level `. The merge removed `+2 authentication nodes
(dark grey). The authentication nodes are identical at levels 1 to `, and no authentication
node is needed at level `+ 1.

are close to the root. There are however some constraints because the octopus is embedded
in a Merkle tree:

• there cannot be more than 2` merges at level `;

• if there are k`+1 tentacles at level `+ 1, there cannot be more than bk`+1/2c merges at
level `.

To simplify the analysis, we first assume that k is a power of two.

Lemma 5. Let k and h be integers such that k is a positive power of 2 and k ≤ 2h. Then,
given k leaves to authenticate in a Merkle tree of height h, the octopus authentication algorithm
of Figure 5.2 outputs between h− log2 k and k(h− log2 k) authentication nodes (inclusive).

Essentially, in the best case the octopus is shaped like a broom with a stick of length
h− log2 k at the top, whereas in the worst case it is shaped like a rake with k teeth of length
h− log2 k at the bottom.

Proof. In the worst case, all levels up to log2 k−1 are saturated with merges, and the number
of redundant nodes is:

log2 k−1∑
`=0

2`(`+ 2) = k log2 k

In the best case, there are k/2 merges at level h− 1, k/4 merges at level h− 2, . . . , and 1
merge at level h− log2 k. The number of redundant nodes is:

log2 k∑
`=1

k

2`
(h− `+ 2) = (k − 1)h+ log2 k

The result follows.

We now prove the following theorem, in the general case.

50



Theorem 5. Let k and h be integers such that k ≤ 2h. Then, given k leaves to authenticate
in a Merkle tree of height h, if the octopus authentication algorithm of Figure 5.2 outputs oct
authentication nodes, then:

h− dlog2 ke ≤ oct ≤ k(h− blog2 kc)

Proof. We let k′ = 2blog2 kc be the largest power of two smaller than or equal to k. In the
worst case, all levels up to log2 k

′ − 1 are saturated with merges, and level k′ contains k − k′
merges. By Lemma 5, the number of redundant nodes is:

k′ log2 k
′ + (k − k′)(log2 k

′ + 2) ≥ k log2 k
′

so the number of authentication nodes is at most k(h− blog2 kc)

In the best case, all merges are at the bottom levels. In particular, it is possible to merge
k tentacles in the dlog2 ke bottom levels. The only remaining tentacle at level h − dlog2 ke
needs h− dlog2 ke authentication nodes. The lower bound follows.

Corollary 3. Compared to the SPHINCS construction, octopus authentication saves at least
k hash values – assuming that x is rounded to log2 k in SPHINCS.

5.3 Average case

To study the average case, we denote by X(h, k) the random variable equal to the minimal
number of hash values necessary to authenticate k uniformly distributed leaves in a Merkle
tree of height h. We denote by T (h, k) the expectation of X(h, k), i.e. the average number
of hash values. We adopt a bottom-up approach to derive a recurrence relation between
consecutive levels, i.e. T (h, ·) and T (h + 1, ·), and can then solve the problem by dynamic
programming.

We also denote by P (h, k, i) the probability that given k uniformly distributed tentacles
at level h+ 1, i merges occur at level h.

Lemma 6. The probability P (h, k, i) is equal to:

P (h, k, i) =

(
2h+1

k

)−1(
2h

k − i

)(
k − i
i

)
2k−2i

Proof. There are
(

2h+1

k

)
sets of k distinct indices at level h + 1. At level h, there are

(
2h

k−i
)

choices of k − i merged slots, out of which
(
k−i
i

)
choices of i slots that contain a merge. For

each of the k − 2i non merged slots at level h, there are two possible slots at level h+ 1.

Theorem 6. T (h, k) satisfies the following recurrence relation:

T (0, 1) = 0

T (h+ 1, k) =

bk/2c∑
i=0

(k − 2i+ T (h, k − i))P (h, k, i)
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Proof. First, T (0, 1) = 0, because no authentication node is needed for a tree reduced to one
node.

We now remark that if k leaf indices are uniformly distributed, and that they have merged
into t tentacles at some upper level `, these t tentacles are also uniformly distributed at level
`. This is independent of how the k merged into t, so we can view the subtree above level `
as a standalone tree of height `.

This allows to derive the recurrence relation between consecutive levels. Indeed, i merges
occur at level h with probability P (h, k, i). In that case, k − 2i authentication nodes are
necessary at level h + 1 to authenticate the k − 2i non-merged tentacles, and T (h, k − i)
authentication nodes are necessary at upper levels on average.

Standard deviation We can also derive a recurrence relation to compute the standard

deviation of X(h, k). We recall that it is equal to
√
T (2)(h, k)− T (h, k)2, where T (2)(h, k)

denotes the expectation of X(h, k)2. We can compute T (2) with the following recurrence
relation, and then derive the standard deviation.

T (2)(h+ 1, k) =

bk/2c∑
i=0

(
(k − 2i)2 + 2(k − 2i)T (h, k − i) + T (2)(h, k − i)

)
P (h, k, i)

5.4 Application

We can solve the recurrences by dynamic programming. For the proposed parameters in
SPHINCS, we obtain T (h = 16, k = 32) ≈ 324.3, with a standard deviation of 7.1. In
contrast, the HORST construction in SPHINCS uses k(h − x) + 2x = 384 authentication
values (both for x = 5 and x = 6). Even in the worst case, our octopus authentication uses
only k(h− log2 k) = 352 authentication values.

Consequently, octopus authentication saves 1024 bytes in the worst case and 1909 bytes
on average, compared to the threshold method proposed for HORST in SPHINCS. Compared
to the naive method of using k full authentication paths, octopus authentication saves 6005
bytes on average.
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Chapter 6

Back to collision resistance:
security reductions of mask-less
constructions

Early versions of Merkle trees and Winternitz OTS used a simple hash function to compute
the value of each node from its children. More recently, masks were introduced in Merkle
trees [DOTV08] and Winternitz OTS [Hül13] to reduce the security of such constructions
to the second-preimage resistance instead of the collision resistance of the underlying hash
function. Given an output of n bits, generic classical attacks against collision resistance –
birthday attacks in Θ(2n/2) – are indeed faster than generic classical attacks against second-
preimage resistance – in Θ(2n) – so relying on second-preimage resistance allows to use a
smaller output size n.

However, in the post-quantum world, Bernstein [Ber09] has shown that generic attacks
against second-preimage resistance and collision resistance are both in Θ(2n/2), if one takes
into account all costs (including hardware, communication, etc.). Yet, when we read carefully
the proofs of security of Merkle trees [DOTV08], reduction to second-preimage resistance is
less tight than collision resistance, with a factor being the total number of hash evaluations
in the construction (e.g. 2H for a Merkle tree of height H). The reason is that in order
to transform a signature forger into a second preimage finder one has to “guess” where the
forger will invert a value. A recent proof for the XMSS-T construction has gotten rid of this
factor [HRS16], but this proof models the underlying hash function as an unbreakable random
oracle, which does not appear in the security reduction. On the contrary, a collision finder
can accept a collision anywhere.

Apart from these security considerations, masks introduce more complexity in the sig-
nature scheme, which is undesirable from an implementation point-of-view, as it increases
the risk of implementation discrepancies, bugs, etc. Masks also slightly increase the size of
public keys, although XMSS-T reduced them to a single seed. Requiring collision resistance
may rule out potentially faster second-preimage-resistant functions such as 5-round Haraka-
v2 [KLMR16]. But according to its designers, Haraka-v2 becomes collision-resistant with only
one additional round. Essentially, switching from second-preimage resistance to collision re-
sistance replaces a XOR mask by a round. Even though there may be room for improvement
in the design on second-preimage-resistant functions, it seems that their performance should
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remain similar to that of collision-resistant functions for the same security level.

In short, coming back to collision-resistant hash functions allows a simpler design and
harms neither security nor performance in the post-quantum world. In this chapter, we review
constructions based on collision-resistant hash functions, and clarify their proofs of security
in the standard model. We first review basic building blocks: Winternitz OTS (Section 6.1)
and schemes based on the obtain a random subset (ORS) construction (Section 6.2). We then
study generic transformations: seed-based secret key (Section 6.3), Merkle tree (Section 6.4),
hyper trees (Section 6.5) and batch signing (Section 6.6).

6.1 Mask-less Winternitz OTS

In [Hül13], Hülsing proposed WOTS+, a version of Winternitz OTS with XOR masks in
the hash chains, and provided a quite complex security proof. Even though a proper security
analysis of WOTS is non-trivial, we aim at providing a simpler proof for mask-less Winternitz
OTS, with tighter constants. A tight and simple security reduction is desirable for WOTS,
because it is a building block of much more complex schemes such as XMSS [BDH11] and
SPHINCS [BHH+15].

In [DSS05], Dods et al. proposed a generic security reduction of OTS schemes based on
directed acyclic graphs (DAGs) to one-wayness, collision resistance and undetectability of the
underlying functions. The simple version of WOTS, which iterates a hash function without
introducing masks, is a particular case of DAG-based OTS schemes. However, Dods et al.’s
analysis can be refined in the case of Winternitz’ graph to obtain a tighter security reduction.

6.1.1 Reduction of WOTS to collision resistance

In this chapter, we use the notations defined in Section 1.1. In particular, we recall that Bn
is the set of n-bit blocks {0, 1}n.

We now define the Winternitz checksum with the checksummed function, and give a defi-
nition of the WOTS signature scheme.

Definition 13 (Winternitz checksum). Given a security parameter n and a power-of-2 chain
length w, we let:

µ = n/ log2w

` = µ+ blog2 µ(w − 1)/ log2wc+ 1

We define the function checksummed : Bn → {0, . . . , w − 1}` as follows. Given an n-
bit input x, split x into µ blocks of log2w bits (x1, . . . , xµ), compute the checksum C(x) =∑µ

i=1w− 1− xi encoded as a (`−µ) log2w bit string and return x||C(x) split into ` blocks of
log2w bits.

Definition 14 (Mask-less Winternitz OTS). Given a security parameter n, a power-of-2
chain length w, and a family Fn of functions F : Bn → Bn, the mask-less Winternitz OTS is
defined over:

• the message space M = Bn,
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• the public key space PK = B`
n,

• the secret key space SK = B`
n,

• the signature space SG = B`
n,

by the following algorithms:

• key generation KG(1n) is (sk
$← SK; pk ← (Fw−1(ski))1≤i≤`; (pk, sk));

• signing S(sk,M) is ((x1, . . . , x`)← checksummed(M);σ ← (F xi(ski))1≤i≤`;σ);

• public key extraction E(M,σ) is ((x1, . . . , x`)← checksummed(M); (Fw−1−xi(σi))1≤i≤`).

We now reduce EU-CMA security of WOTS to the security properties of Fn. Security
reductions in [DSS05] and [Hül13] essentially rely on the same principles: an adversary that
outputs a forgery either finds a collision in the underlying hash function or inverts it, provided
that the hash function is undetectable. We clarify the reduction in the specific case of mask-
less WOTS.

Theorem 7. Let Fn be a hash function family. We consider the following resources ξ: the
time τ , the number of queries to the signature scheme q and the number of queries to Fn qF .
The unforgeability of the Winternitz OTS based on Fn can be bounded by the undetectability,
one-wayness and collision resistance of Fn:

InSecEU-CMA(WOTS(Fn); τ, q = 1, qF )

≤ (w − 1)`

[
w − 2

2
InSecUD(Fn; τ ′, q′F ) + InSecOW(Fn; τ ′, q′F ) + InSecCR(Fn; τ ′, q′F )

]
where q′F = qF + (w − 1)(2`+ 1) and τ ′ = τ + c · (w − 1)` for some constant c.

Essentially, security degrades with a factor (w−1)` because an adversary can try to invert
a value or find a collision anywhere in the hash chains. Additionally, security decreases with
the chain length w if the hash function is not undetectable: intuitively if the hash function
output is not uniformly distributed, this bias grows after many iterations and it becomes
easier to invert.

Compared to previous results [Hül13], we obtained a tighter bound with: a main factor of
w − 1 instead of w, a factor of (w − 2)/2 instead of w for the undetectability reduction, and
a term of 1 times the collision resistance instead of w times the second-preimage resistance.

Proof. Let A be a WOTS adversary using at most resources (τ, q = 1, qF ). We consider the
games WOTS, G1 and G2 on Figure 6.1. WOTS corresponds to existential unforgeability of
Winternitz OTS; variants G1 and G2 allow to reduce the security to properties of Fn.

By Lemmas 7, 8 and 9, we obtain the following bounds:

Pr[AWOTS
Fn ⇒ 1] ≤ (w − 1)`Pr[AG1

Fn ⇒ 1]

Pr[AG2
Fn ⇒ 1] ≤ InSecOW(Fn; τ ′, q′F ) + InSecCR(Fn; τ ′, q′F )∣∣∣Pr[AG2
Fn ⇒ 1]− Pr[AG1

Fn ⇒ 1]
∣∣∣ ≤ w − 2

2
InSecUD(Fn; τ ′, q′F )

The result follows.
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Game WOTS

proc Initialize

F
$← Fn

proc GenKey(1n)

(s1, . . . , s`)
$← B`

n

for i ∈ {1, . . . , `} do pi ← Fw−1(si)
return (p1, . . . , p`)

proc Sign(M)
(x1, . . . , x`)← checksummed(M)
for i ∈ {1, . . . , `} do yi ← F xi(si)
return (y1, . . . , y`)

proc Finalize(M,y1, . . . , y`)
(x1, . . . , x`)← checksummed(M)
win←

∧`
i=1 F

w−1−xi(yi) = pi
return win

Adversary B

F, v ← Initialize
Run A
On query GenKey(1n) of A

(p1, . . . , p`)←WOTS.GenKey(1n)

(α, β)
$← {1, . . . , `} × {1, . . . , w − 1}

pα ← Fw−1−β(v)
return (p1, . . . , p`) to A

On query Sign(M) of A
return G2.Sign(M) to A

On Finalize(M,y1, . . . , y`) of A
(x1, . . . , x`)← checksummed(M)
if xα ≥ β then abort
u← F β−xα−1(yα)
if F (u) = v then output (preimg, u)
for i ∈ {1, . . . , w − 1− β}

if F i(u) 6= F i−1(v)∧F i+1(u) = F i(v)
output (collision, F i(u), F i−1(v))

abort

Games G1 and G2

proc Initialize

F
$← Fn

proc GenKey(1n)
(p1, . . . , p`)←WOTS.GenKey(1n)

(α, β)
$← {1, . . . , `} × {1, . . . , w − 1}

u
$← Bn; v ← F (u)

pα ← Fw−1−β(v)

return (p1, . . . , p`)
proc Sign(M)

(y1, . . . , y`)←WOTS.Sign(M)
if xα < β then abort

yα ← F xα−β(v)

return (y1, . . . , y`)
proc Finalize(M,y1, . . . , y`)

(x1, . . . , x`)← checksummed(M)
if xα ≥ β then abort
win←

∧`
i=1 F

w−1−xi(yi) = pi
return win

Figure 6.1: Games WOTS, G1 and G2 and adversary B against preimage and collision re-
sistance of Fn. Boxed statements are present only in game G2. An adversary against games
WOTS, G1 and G2 is forbidden to submit to Finalize a message M that it already queried
to Sign.
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Lemma 7. Let A be a WOTS adversary. We have the following relation between the success
probability of A against games WOTS and G1 (Figure 6.1).

Pr[AWOTS
Fn ⇒ 1] ≤ (w − 1)`Pr[AG1

Fn ⇒ 1]

Essentially, games WOTS and G1 differ by guessing a value that an adversary would
invert in its forgery. Lemmas 8 and 9 will study the actual reduction to one-wayness, collision
resistance and undetectability.

Proof. Let’s first assume that A queries a message M yielding a signature (y1, . . . , y`) and
successfully forges a signature (y′1, . . . , y

′
`) for M ′ 6= M in game WOTS. Then, by construction

of the Winternitz checksum, there exists α such that x′α < xα. If game G1 picks (α, β = xα) –
which happens with probability 1/(w − 1)` and is independent of the choices of A – then A
wins G1.

Likewise, if A directly forges a signature (y′1, . . . , y
′
`) without querying a message, then by

construction of the Winternitz checksum there exists α such that x′α < w − 1. If game G1

picks (α, β = w − 1) then A wins. The result follows.

Lemma 8. Let A be a WOTS adversary. We have the following bound on the success
probability of A against game G2 (Figure 6.1).

Pr[AG2
Fn ⇒ 1] ≤ InSecOW(Fn; τ ′, q′F ) + InSecCR(Fn; τ ′, q′F )

where q′F = qF + (w − 1)(2`+ 1) and τ ′ = τ + c · (w − 1)` for some constant c.

Essentially, game G2 can only be won by inverting the target value v or by finding a
collision.

Proof. We construct an adversary B that uses A against the collision resistance and one-
wayness of the underlying hash function family Fn (Figure 6.1). B uses at most resources
(τ ′, q′F ): besides A’s queries to Fn, it makes at most (w − 1)` queries in GenKey, (w − 1)`
queries in Sign and w− 1 in Finalize, i.e. (w− 1)(2`+ 1) additional queries to Fn, in a time
proportional to that.

Given a challenge v, B either returns a preimage of v for F , two colliding messages for F ,
or aborts. We note that when the challenge v is equal to F (u) where u is uniformly distributed
in Bn, B perfectly simulates game G2 for A. We now show that:

Pr[AG2
Fn ⇒ 1] ≤ Pr[BFn ⇒ preimg ∨ collision]

Indeed, if A wins game G2 with a forgery (y1, . . . , y`), then Fw−1−xα(yα) = pα, which
implies Fw−β(u) = Fw−β(F β−xα−1(yα)) = pα = Fw−1−β(v). Therefore it must be the case
that either F (u) = v (a preimage is found) or it exists 1 ≤ i ≤ w − 1− β such that F i(u) 6=
F i−1(v) and F i+1(u) = F i(v) (a collision is found).

Lemma 9. Let A be a WOTS adversary. We have the following relation between the success
probabilities of A against games G1 and G2 (Figure 6.1).∣∣∣Pr[AG2

Fn ⇒ 1]− Pr[AG1
Fn ⇒ 1]

∣∣∣ ≤ w − 2

2
InSecUD(Fn; τ ′, q′F )

where q′F = qF + (w − 1)(2`+ 1) and τ ′ = τ + c · (w − 1)` for some constant c.
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Game G3(β, j)

proc Initialize

F
$← Fn

proc GenKey(1n)
(p1, . . . , p`)←WOTS.GenKey(1n)

α
$← {1, . . . , `}

u
$← Bn; v ← F (u)

pα ← Fw−1−j(v)
return (p1, . . . , p`)

proc Sign(M)
(y1, . . . , y`)←WOTS.Sign(M)
if xα < β then abort
yα ← F xα−j(v)
return (y1, . . . , y`)

proc Finalize(M,y1, . . . , y`)
(x1, . . . , x`)← checksummed(M)
if xα ≥ β then abort
win←

∧`
i=1 F

w−1−xi(yi) = pi
return win

Adversary Cβ,j

F, v ← Initialize
Run A
On query GenKey(1n) of A

(p1, . . . , p`)←WOTS.GenKey(1n)

α
$← {1, . . . , `}

pα ← Fw−1−j(v)
return (p1, . . . , p`) to A

On query Sign(M) of A
(y1, . . . , y`)←WOTS.Sign(M)
if xα < β then abort
yα ← F xα−j(v)
return (y1, . . . , y`) to A

On Finalize(M,y1, . . . , y`) of A
(x1, . . . , x`)← checksummed(M)
if xα ≥ β then abort
output

∧`
i=1 F

w−1−xi(yi) = pi

Figure 6.2: Games G3(β, j) for 1 ≤ j ≤ β ≤ w−1 and adversaries Cβ,j against undetectability
of Fn. An adversary against these games is forbidden to submit to Finalize a message M
that it already queried to Sign.

Essentially, if the hash function is not undetectable, putting a preimage challenge in the
middle of a chain can be detected by an adversary, because the distribution of the associated
public value will change.

Proof. For 1 ≤ j ≤ β ≤ w− 1, we introduce the hybrid games G3(β, j) (Figure 6.2). We first
note that G3(β, β) simulates G2 and G3(β, 1) simulates G1:

Pr[AG2
Fn ⇒ 1] =

w−1∑
β=1

1

w − 1
Pr[AG3(β,β)

Fn ⇒ 1]

Pr[AG1
Fn ⇒ 1] =

w−1∑
β=1

1

w − 1
Pr[AG3(β,1)

Fn ⇒ 1]
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Consequently:

∣∣∣Pr[AG2
Fn ⇒ 1]− Pr[AG1

Fn ⇒ 1]
∣∣∣ ≤ w−1∑

β=1

1

w − 1

∣∣∣Pr[AG3(β,β)
Fn ⇒ 1]− Pr[AG3(β,1)

Fn ⇒ 1]
∣∣∣

≤
w−1∑
β=1

1

w − 1

β−1∑
j=1

∣∣∣Pr[AG3(β,j+1)
Fn ⇒ 1]− Pr[AG3(β,j)

Fn ⇒ 1]
∣∣∣

Besides, given 1 ≤ j < β ≤ w−1, we consider adversary Cβ,j against undetectability of Fn
(Figure 6.2). Cβ,j uses at most resources (τ ′, q′F ). If Cβ,j is given as input a challenge v = F (u)
where u is uniformly distributed in Bn, it perfectly simulates game G3(β, j) for A. If Cβ,j is
given a challenge v uniformly distributed in Bn, it perfectly simulates game G3(β, j + 1) for
A. Therefore the advantage of Cβ,j against undetectability of Fn is the following:∣∣∣Pr[AG3(β,j+1)

Fn ⇒ 1]− Pr[AG3(β,j)
Fn ⇒ 1]

∣∣∣ = SuccUD
Fn (Cβ,j) ≤ InSecUD(Fn; τ ′, q′F )

Consequently:

∣∣∣Pr[AG2
Fn ⇒ 1]− Pr[AG1

Fn ⇒ 1]
∣∣∣ ≤ w−1∑

β=1

β − 1

w − 1
InSecUD(Fn; τ ′, q′F ) =

w − 2

2
InSecUD(Fn; τ ′, q′F )

The result follows.

6.1.2 L-tree WOTS

In practice, more complex structures that use WOTS – such as XMSS or SPHINCS – use
a so-called L-tree to compress the ` values of the public key into a single n-bit string. This
L-tree is a binary tree, but not perfectly balanced because the number of leaves is not a power
of two (due to the Winternitz checksum).

Definition 15 (L-tree). Given a hash function H : B2
n → Bn, the function L-tree compresses

a list of n-bit blocks into a single n-bit block. It is defined by recurrence as:

L-tree(H,x1) = x1

L-tree(H,x1, . . . , x2i+2) = L-tree(H,H(x1, x2), . . . ,H(x2i+1, x2i+2))

L-tree(H,x1, . . . , x2i+3) = L-tree(H,H(x1, x2), . . . ,H(x2i+1, x2i+2), x2i+3)

Remark For our security proofs, the exact shape of the L-tree is irrelevant as long as it is a
binary tree, because in any case the root is computed from the ` leaves with `−1 applications
of the hash function.

Definition 16 (Mask-less LWOTS). Given parameters n, w, the associated Winternitz `, a
family Fn of functions F : Bn → Bn, and a family Hn of hash functions H : B2

n → Bn, the
mask-less L-tree Winternitz OTS is defined over M = Bn, PK = Bn, SK = B`

n, SG = B`
n by

the following algorithms:

• key generation KG(1n) is ((pk, sk)
$←WOTS.KG(1n); (L-tree(H, pk), sk));
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Game LWOTS

proc Initialize

F
$← Fn

H
$← Hn

proc GenKey(1n)
(p1, . . . , p`)←WOTS.GenKey(1n)
p← L-tree(H, p1, . . . , p`)
return p

proc Sign(M)
return WOTS.Sign(M)

proc Finalize(M,y1, . . . , y`)
(x1, . . . , x`)← checksummed(M)
for i ∈ {1, . . . , `} do zi ← Fw−1−xi(yi)
y ← L-tree(H, z1, . . . , z`)
return y = p

Adversary B

F ← Initialize
H

$← Hn
Run A
On query GenKey(1n) of A

(p1, . . . , p`)← GenKey(1n)
p← L-tree(H, p1, . . . , p`)
return p to A

On query Sign(M) of A
return Sign(M) to A

On Finalize(M,y1, . . . , y`) of A
output (M,y1, . . . , y`)

Adversary C

H ← Initialize
F

$← Fn
Run A
On query GenKey(1n) of A

(p1, . . . , p`)←WOTS.GenKey(1n)
p← L-tree(H, p1, . . . , p`)
return p to A

On query Sign(M) of A
return WOTS.Sign(M) to A

On Finalize(M,y1, . . . , y`) of A
(x1, . . . , x`)← checksummed(M)
for i ∈ {1, . . . , `} do zi ← Fw−1−xi(yi)
if L-tree(H, zi) = p ∧ ∃1 ≤ j ≤ ` zj 6= pj

find collision in L-tree
output collision

abort

Figure 6.3: Game LWOTS, adversary B against game WOTS and adversary C against
collision resistance of Hn. An adversary against game LWOTS is forbidden to submit to
Finalize a message M that it already queried to Sign.
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• signing S = WOTS.S;

• public key extraction E(M,σ) is ((y1, . . . , y`)←WOTS.E(M,σ); L-tree(H, y1, . . . , y`)).

Theorem 8. Let Fn and Hn be function families. We consider the following resources ξ: the
time τ , the number of queries to the signature scheme q and the number of queries to Fn and
Hn respectively qF and qH . The unforgeability of the L-tree Winternitz OTS based on Fn and
Hn can be bounded by the unforgeability of WOTS(Fn) and the collision resistance of Hn:

InSecEU-CMA(LWOTS(Fn,Hn); τ, q = 1, qF , qH)

≤ InSecEU-CMA(WOTS(Fn); τ ′, q = 1, qF ) + InSecCR(Hn; τ ′′, q′′H)

where q′′H = qH + 2(`− 1), τ ′ = τ + c · (`− 1) and τ ′′ = τ + c · (w − 1)` for some constant c.

Essentially, an adversary can forge a signature for LWOTS either by forging the underlying
WOTS or by finding an alternative L-tree that hashes to the same root, hence finding a hash
collision.

Proof. Let A be an adversary for LWOTS (Figure 6.3). We construct adversaries B and C
(Figure 6.3). B uses at most resources (τ ′, q, qF ): it spends an additional time proportional to
`−1 to compute the L-tree root. C uses at most resources (τ ′′, q′′h): it makes 2(`−1) additional
calls to Hn to compute L-trees in GenKey and Finalize, and spends time proportional to
(w − 1)` to compute hash chains in Finalize.

We note that B and C both perfectly simulate game LWOTS for A. Besides, if A wins
game LWOTS, then the L-tree root of the forgery matches the public key and we can consider
two cases:

• the L-tree leaves (z1, . . . , z`) correspond to the WOTS public values (p1, . . . , p`), and B
wins game WOTS;

• there is a mismatch zi 6= pi, so by the following Lemma 10, a collision for H must exist
in the L-tree, and C successfully outputs it.

Consequently:
Pr[ALWOTS

Fn,Hn ⇒ 1] ≤ Pr[BWOTS
Fn ⇒ 1] + Pr[CCR

Hn ⇒ 1]

The result follows.

Definition 17 (Binary hash tree). Given a hash function H : B2
n → Bn, a tree T =

(t, t1, . . . , tm) of root t ∈ Bn and leaves t1, . . . , tm ∈ Bn is called binary hash tree if each
internal node u is the hash of its children (u`, ur) by H, i.e. u = H(u`, ur).

For example, Merkle trees and L-trees are binary hash trees.

Lemma 10. Let A,B be two binary hash trees of the same shape such that a = b but
(a1, . . . , am) 6= (b1, . . . , bm), i.e. their roots are equal but at least a pair of leaves (ai, bi) differ.
Then there exist a pair of internal nodes (u, v) ∈ A×B such that u = v and (u`, ur) 6= (v`, vr).
In particular, u`||ur and v`||vr are a collision for H.

Proof. Let (a0
i , . . . , a

p
i ) and (b0i , . . . , b

p
i ) be the sequences of ancestors of ai and bi. Then

a0
i = ai 6= bi = b0i and api = a = b = bpi , so there exists 1 ≤ j ≤ p such that aj−1

i 6= bj−1
i and

aji = bji . The pair (u, v) = (aji , b
j
i ) verifies the property.
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6.2 Mask-less ORS

We now study the security of constructions from the ORS family (obtain a random subset),
be it HORS (hash to obtain a random subset) or PORS (PNRG to obtain a random subset),
with or without tree. We formalize and generalize results by Reyzin and Reyzin [RR02] and
Bernstein et al. [BHH+15].

6.2.1 ORS (without tree)

Given parameters k and t, we let T = {1, . . . , t} and we recall that we denote by Pk(T ) the
subsets of T of size at most k.

Definition 18 (Non-adaptive subset resilience). Given a security parameter n, a set size t, a
subset size k ≤ t, a number of queries r, and a family of functions to obtain random subsets
On = {ORSK : Bn → Pk(T )|K ∈ Bn}, the advantage of an adversary A = (A1, . . . ,Ar+1)
against r-non-adaptive subset resilience of On is:

Succr−NASR
On (A) = Pr

[
G

$← (Bn → Bn);

M1 ← A1();

K1 ← G(M1);

M2 ← A2(K1,M1);

. . . ;

Mr ← Ar(K1,M1, . . . ,Kr−1,Mr−1);

Kr ← G(Mr);

(K ′,M ′)← Ar+1(K1,M1, . . . ,Kr,Mr)

: ORSK′(M
′) ⊆ ORSK1(M1) ∪ . . . ∪ ORSKr(Mr)

]
Definition 19 (Mask-less ORS signature). Given a security parameter n, a set size t, a subset
size k ≤ t, a family Fn of functions F : Bn → Bn, a family Gn of functions Gsalt : Bn → Bn,
and a family of functions to obtain random subsets On = {ORSK : Bn → Pk(T )|K ∈ Bn},
the mask-less ORSS is defined over M = Bn, PK = Bt

n, SK = Bn × Bt
n, SG = Bn × Bk

n by
the following algorithms:

• key generation KG(1n) is ((salt, sk)
$← SK; pk ← (F (ski))1≤i≤t; (pk, (salt, sk)));

• signing S((salt, sk),M) is

(K ← Gsalt(M); (x1, . . . , xk)← ORSK(M);σ ← (skxi)1≤i≤k; (K,σ));

• verification V(pk,M, (K,σ)) is ((x1, . . . , xk)← ORSK(M);
∧k
i=1 F (σi) = pkxi).

Remark Contrary to the previous hash-based signature schemes, ORSS is not extractable
(Definition 2). Indeed, given a single signature one can only recover up to k public values.
We will overcome this limitation in the next section with the ORST scheme.
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Game ORSS and

proc Initialize

F
$← Fn

proc GenKey(1n)

salt
$← Bn

(s1, . . . , st)
$← Bt

n

for i ∈ {1, . . . , t} do pi ← F (si)
return (p1, . . . , pt)

proc Sign(M)
K ← Gsalt(M)
(x1, . . . , xk)← ORSK(M)
for j ∈ {1, . . . , k} do yj ← sxj
return (K, y1, . . . , yk)

proc Finalize(M,K, y1, . . . , yk)
(x1, . . . , xk)← ORSK(M)
win←

∧k
j=1 F (yj) = pxj

return win

Adversary C

G← Initialize
F

$← Fn
Run A
On query GenKey(1n) of A

(p1, . . . , pt)
$← ORSS.GenKey(1n)

return (p1, . . . , pt) to A
On query Sign(M) of A

K ← G(M)
(x1, . . . , xk)← ORSK(M)
for j ∈ {1, . . . , k} do yj ← sxj
return (K, y1, . . . , yk) to A

On Finalize(M,K, y1, . . . , yk) of A
(x1, . . . , xk)← ORSK(M)
output

∧k
j=1 F (yj) = pxj

Games G4 and G5

proc Initialize

F
$← Fn

proc GenKey(1n)

G
$← (Bn → Bn)

(p1, . . . , pt)
$← ORSS.GenKey(1n)

α
$← {1, . . . , t}

return (p1, . . . , pt)
proc Sign(M)

K ← G(M)
(x1, . . . , xk)← ORSK(M)

if α ∈ {x1, . . . , xk} then abort

for j ∈ {1, . . . , k} do yj ← sxj
return (K, y1, . . . , yk)

proc Finalize(M,K, y1, . . . , yk)
(x1, . . . , xk)← ORSK(M)

if α /∈ {x1, . . . , xk} then abort

win←
∧k
j=1 F (yj) = pxj

return win

Adversary D

F, v ← Initialize
Run A
On query GenKey(1n) of A

(p1, . . . , pt)← G5.GenKey(1n)
pα ← v
return (p1, . . . , pt) to A

On query Sign(M) of A
return G5.Sign(M) to A

On Finalize(M,K, y1, . . . , yk) of A
(x1, . . . , xk)← ORSK(M)
if ∃i, α = xi then

u← yi
if F (u) = v then output u

abort

Figure 6.4: Games ORSS, G4 and G5, adversary C against pseudo-randomness of Gn and
adversary D against one-wayness of Fn. Boxed statements are present only in game G5. An
adversary against games ORSS, G4 and G5 is forbidden to submit to Finalize a message M
that it already queried to Sign.
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Theorem 9. Let Fn and Gn be function families, and On be a function family to obtain a
random subset. We consider the following resources ξ: the time τ , the number of queries to the
signature scheme q and the number of queries to Fn, Gn and On respectively qF , qG and qO.
The unforgeability of ORSS based on Fn, Gn and On can be bounded by the subset-resilience
of On, the one-wayness of Fn and the pseudo-randomness of Gn:

InSecEU-CMA(ORSS(Fn,Gn,On); τ, q = r, qF , qO)

≤ InSecr−NASR(On; τ ′, q′O) + tInSecOW(Fn; τ ′, q′F ) + InSecPRF(Gn; τ ′, q′G)

where q′O = qO, q′F = qF + t, q′G = r and τ ′ = τ + c · (t+ (r + 1)k) for some constant c.

Essentially, assuming that Gn is pseudo-random, an attacker can forge a signature either
by breaking the subset-resilience of On or by inverting at least one public value. Since there
are t target values for one-wayness, security degrades by a factor at most t.

Proof. The proof is similar to the proof of security of WOTS (Theorem 7). Let A be an
adversary for ORSS (Figure 6.4) that queries at most r messages to the Sign oracle.

We first consider adversary C against pseudo-randomness of Gn (Figure 6.4). C uses at
most resources (τ ′, q′G): it makes at most r queries to Gn in Sign; it spends additional time
proportional to t in GenKey, to rk in Sign (called r times) and to k in Finalize.

If C is given as input a challenge G uniformly distributed in Gn, it perfectly simulates game
ORSS for A. If C is given as input a challenge G uniformly distributed in (Bn → Bn), it
perfectly simulates game G4 for A. Therefore the advantage of C against pseudo-randomness
of Gn is the following:

SuccPRF
Gn (C) =

∣∣∣Pr[AORSS
Fn,Gn,On ⇒ 1]− Pr[AG4

Fn,Gn,On ⇒ 1]
∣∣∣

Consequently:

Pr[AORSS
Fn,Gn,On ⇒ 1] ≤ InSecPRF(Gn; τ ′, q′G) + Pr[AG4

Fn,Gn,On ⇒ 1]

We now assume that A queries r messages M1, . . . ,Mr yielding keys K1, . . . ,Kr and
successfully forges a signature for some M ′ /∈ {M1, . . . ,Mr} with key K ′ in game G4. There
are two cases:

• either ORSK′(M
′) ⊆ ORSK1(M1)∪ . . .∪ORSKr(Mr), and we can construct an adversary

B that uses A to break the r-subset-resilience of On, with resources (τ ′, q′O);

• or there exists α ∈ ORSK′(M
′) such that α /∈ ORSK1(M1) ∪ . . . ∪ ORSKr(Mr), and if

game G5 picks this α, which happens with probability 1/t and is independent of the
choices of A, then A wins G5.

Likewise, if A directly forges a signature without querying any message, then A wins G5 as
long as G5 picks some α ∈ ORSK′(M

′), which happens with probability at least 1/t. It follows
that:

Pr[AG4
Fn,Gn,On ⇒ 1] ≤ InSecr−NASR(On; τ ′, q′O) + tPr[AG5

Fn,Gn,On ⇒ 1]
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Last, the success probability of A against game G5 is bounded by InSecOW(Fn; τ ′, q′F ).

Pr[AG5
Fn,Gn,On ⇒ 1] ≤ InSecOW(Fn; τ ′, q′F )

Indeed, we can construct an adversary D that uses A against the one-wayness of Fn, that uses
at most resources (τ ′, q′F ) (Figure 6.4). When given as input a challenge v = F (u) where u is
uniformly distributed in Bn, D perfectly simulates game G5 for A. The bound follows.

6.2.2 ORS with tree

The ORS with tree construction allows to reduce the public key to a single n-bit hash and to
make the scheme extractable. For this purpose, we need to define Merkle trees.

Definition 20 (Merkle tree). A Merkle tree [Mer89] is a balanced binary hash tree, with a
power-of-2 number of leaves. We denote by Merkle-root, Merkle-auth and Merkle-extract three
useful deterministic functions on Merkle trees, as follows.

Given the set of leaves x1, . . . , x2h, Merkle-root(H,x1, . . . , x2h) returns the root hash of the
Merkle tree.

Given the set of leaves x1, . . . , x2h and a subset of indices I ⊆ {1, . . . , 2h}, the function
Merkle-auth(H,x1, . . . , x2h , I) returns a sufficient sequence of authentication nodes.

Given a subset of leaves (xi)i∈I along with their indices i, and a sufficient sequence of
authentication nodes A, Merkle-extract(H, (i, xi)i∈I , A) returns the root hash of the Merkle
tree.

For conciseness, we do not explicit Merkle-root, Merkle-auth and Merkle-extract here, but
they are quite straightforward to define and implement [Mer89]. We assume that they verify
the correctness property: for all x1, . . . , x2h , and all I ⊆ {1, . . . , 2h},

Merkle-extract(H, (i, xi)i∈I ,Merkle-auth(H,x1, . . . , x2h , I)) = Merkle-root(H,x1, . . . , x2h)

Remark Merkle-auth can be implemented with several strategies: full authentication paths,
optimal octopus (Chapter 5), authentication paths with threshold as in HORST [BHH+15],
etc. Which strategy is used is irrelevant for our security analysis, as long as enough authen-
tication nodes are revealed.

Definition 21 (Mask-less ORST). Given a security parameter n, a power-of-2 set size t,
a subset size k ≤ t, a family Fn of functions F : Bn → Bn, a family Gn of functions
Gsalt : Bn → Bn, a family Hn of hash functions H : B2

n → Bn, and a family of functions to
obtain random subsets On = {ORSK : Bn → Pk(T )|K ∈ Bn}, the mask-less ORST is defined

over M = Bn, PK = Bn, SK = Bt
n, SG = Bn ×Bk

n ×B
k log2 t
n by the following algorithms:

• key generation KG(1n) is ((pk, sk)
$← ORSS.KG(1n); (Merkle-root(H, pk), sk));

• signing S((salt, sk),M) is

(K ← Gsalt(M); (x1, . . . , xk)← ORSK(M);σ ← (skxi)1≤i≤k;

A← Merkle-auth(H, pk1, . . . , pkt, (x1, . . . , xk)); (K,σ,A));
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Game ORST

proc Initialize

F
$← Fn

H
$← Hn

proc GenKey(1n)
(p1, . . . , pt)← ORSS.GenKey(1n)
p← Merkle-root(H, p1, . . . , pt)
return p

proc Sign(M)
K ← Gsalt(M)
(x1, . . . , xk)← ORSK(M)
for j ∈ {1, . . . , k} do yj ← sxj
A← Merkle-auth(H, p1, . . . , pt, (xj))
return (K, y1, . . . , yk, A)

proc Finalize(M,K, y1, . . . , yk, A)
(x1, . . . , xk)← ORSK(M)
y ← Merkle-extract(H, (xj , F (yj)), A)
return y = p

Adversary B

F,H ← Initialize
Run A
On query GenKey(1n) of A

(p1, . . . , pt)← ORSS.GenKey(1n)
p← Merkle-root(H, p1, . . . , pt)
return p to A

On query Sign(M) of A
(K, y1, . . . , yk)← ORSS.Sign(M)
(x1, . . . , xk)← ORSK(M)
A← Merkle-auth(H, p1, . . . , pt, (xj))
return (K, y1, . . . , yk, A) to A

On Finalize(M,K, y1, . . . , yk, A) of A
(x1, . . . , xk)← ORSK(M)
if
∧k
j=1 F (yj) = pxj then

output (forgery,M, y1, . . . , yk)
y ← Merkle-extract(H, (xj , F (yj)), A)
if y = p then

find collision in Merkle-tree
output collision

abort

Figure 6.5: Game ORST and adversary B against game ORSS and collision-resistance of
Hn. An adversary against game ORST is forbidden to submit to Finalize a message M that
it already queried to Sign.

• public key extraction E(M, (K,σ,A)) is

((x1, . . . , xk)← ORSK(M);Merkle-extract(H, (xi, F (σi))1≤i≤k, A)).

Theorem 10. Let Fn, Gn and Hn be function families, and On be a function family to obtain
a random subset. We consider the following resources ξ: the time τ , the number of queries
to the signature scheme q and the number of queries to Fn, Hn and On respectively qF , qH
and qO. The unforgeability of ORST based on Fn, Gn, Hn and On can be bounded by the
unforgeability of ORSS(Fn,Gn,On) and the collision resistance of Hn:

InSecEU-CMA(ORST(Fn,Gn,Hn,On); τ, q = r, qF , qH , qO)

≤ InSecEU-CMA(ORSS(Fn,Gn,On); τ ′, q = r, qF , q
′
O) + InSecCR(Hn; τ ′, q′H)

where q′H = qH + (r + 2)(t− 1), q′O = qO + r, and τ ′ = τ + c · (r + 2)t for some constant c.

Proof. The proof is similar to the security reduction of LWOTS (Theorem 8). Let A be an
adversary against game ORST (Figure 6.5). We can construct an adversary B (Figure 6.5)
that tries to win game ORSS or to find a collision for Fn. Regarding resources, each call to
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Merkle-root, Merkle-auth or Merkle-extract consists of at most t − 1 calls to H, and B makes
at most r + 2 such calls.

If A wins the game, then the Merkle-tree root of the forgery matches the public key, and
there are two cases:

• the Merkle tree leaves (F (yi))1≤i≤k correspond to the ORSS public values (pxi)1≤i≤k,
and adversary B wins game ORSS,

• there is a mismatch, i.e. for some 1 ≤ j ≤ k, F (yj) 6= pxj . In that case we consider the
trees Aj and Bj that contain the authentication paths of F (yj) and pxj (respectively).
By Lemma 10 a collision for H must exist between trees Aj and Bj , and adversary B
successfully outputs it.

The result follows.

6.3 Seed-based secret key

We now analyze the security of signature schemes that reduce the size of the secret key to a
small seed, using a PRF to expand it.

Definition 22 (Pseudo-random transformation). Let N be an integer smaller than or equal
to 2n and (KG,S,V) be a signature scheme such that KG contains statements to sample N

values s0, . . . , sN−1 uniformly at random from Bn, i.e. s0
$← Bn; . . . ; sN−1

$← Bn. Given an
integer i < N , we denote by dicn a n-bit encoding of i (e.g. big-endian, little-endian, etc.).

Given a family Gn of functions Gseed : Bn → Bn, the pseudo-random transformation of
(KG,S,V) is a signature scheme (KG′,S,V) where key generation KG′ contains the statement

seed
$← Bn followed by algorithm KG where each statement si

$← Bn is replaced by si ←
Gseed(dicn).

Theorem 11. Let Gn be a function family and (KG,S,V) be a signature scheme. We consider
the following resources: the time τ , the number of queries to Gn qG, and unspecified resources
ξ specific to (KG,S,V). The unforgeability of the pseudo-random transformation of (KG,S,V)
under Gn can be bounded by the unforgeability of (KG,S,V) and the pseudo-randomness of
Gn:

InSecEU-CMA(SEED(Gn, (KG,S,V)); τ, ξ)

≤ InSecEU-CMA((KG,S,V); τ, ξ) + InSecPRF(Gn; τ ′, q′G)

where q′G = N and τ ′ = τ + c ·N for some constant c.

Proof. The original key generation KG is equivalent to sampling a function G uniformly at
random from (Bn → Bn), and then computing si ← G(dicn). It follows that an adversary A
for EU-CMA of (KG,S,V) can be turned into a distinguisher B for pseudo-randomness of Gn
that uses resources (τ ′, q′G): given a function G sampled either from (Bn → Bn) or from Gn,
B simulates the signature scheme for A and outputs 1 if and only if A successfully forges a
signature.
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Depending on whether G was sampled from (Bn → Bn) or from Gn, B simulates (KG,S,V)
or SEED(Gn, (KG,S,V)) for A. Consequently:∣∣∣SuccEU-CMA

SEED(Gn,(KG,S,V))(A)− SuccEU-CMA
(KG,S,V) (A)

∣∣∣ = SuccPRF
Gn (B) ≤ InSecPRF(Gn; τ ′, q′G)

The result follows.

Lazy evaluation In practice, a seed-transformed scheme can be lazily evaluated: values
generated from the seed need not necessarily be computed at key generation time, nor stored
in the secret key. Instead, they can be computed on demand in the signature algorithm, which
is especially relevant when N is large.

6.4 Mask-less Merkle tree

The Merkle tree construction allows to transform a one-time signature scheme into a multiple-
time signature scheme by creating a tree with 2h instances of the one-time scheme. The new
scheme is indexed (Definition 3).

Definition 23 (Merkle tree signature). Given a security parameter n, a height parameter h,
an extractable signature scheme (KG,S, E) defined over spaces (M,PK,SK,SG), and a family
Hn of hash functions H : B2

n → Bn, the Merkle tree indexed signature scheme is defined over:

• the message space M′ =M, the public key space PK′ = Bn,

• the secret key space SK′ = SK2h,

• the signature space SG′ = SG ×Bh
n,

• the index space I ′ = {1, . . . , 2h},
by the following algorithms:

• key generation KG′(1n) is

((for i ∈ I ′ do (ski, pki)
$← KG(1n)); pk ← Merkle-root(H, pk1, . . . , pk2h); (pk, sk));

• indexed signing S ′(sk, i,M) is

(σ ← S(ski,M);A← Merkle-auth(H, pk1, . . . , pk2h , i); (σ,A))

• public key extraction E ′(i,M, (σ,A)) is (e← E(M,σ);Merkle-extract(H, (i, e), A)).

Theorem 12. Let Hn be a hash function family and (KG,S, E) be an extractable signature
scheme. We consider the following resources: the time τ , the number of signature queries q,
the maximal number of signature queries per index qi, the number of queries to Hn qH , and
unspecified resources ξ specific to (KG,S,V). The unforgeability of the Merkle tree indexed
signature scheme based on Hn and (KG,S, E) can be bounded by the unforgeability of (KG,S, E)
and the collision resistance of Hn:

InSecEU-CMA(MT(Hn, (KG,S, E)); τ, q, qi, qH , ξ)

≤ 2hInSecEU-CMA((KG,S, E); τ ′, q′, ξ) + InSecCR(Hn; τ ′, q′H)

where q′ = qi, q
′
H = qH + 2h and τ ′ = τ + c · qh for some constant c.
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Essentially, the security degrades with a factor 2h because an adversary can try to break
any of the 2h instances of the underlying signature scheme.

Proof. We follow the proof by Dahmen et al. [DOTV08]. Given an adversary A against the
Merkle signature scheme, a successful forgery happens in two cases:

• the forged signature σ at index i matches with pki, and we can construct an adversary
B against the underlying scheme (KG,S, E); more precisely B guesses i and places the
challenge at leaf i, the guess being correct with probability 2−h,

• the signature does not match and by Lemma 10 we can obtain a hash collision in the
Merkle tree.

The bound follows.

6.5 Product composition and hyper-trees

The product composition was analyzed by Malkin et al. [MMM02]. It allows to compose
indexed signature schemes to multiply their index spaces, with a limited overhead for the
signer. This composition is the basis of hyper-trees as in XMSS and SPHINCS.

Definition 24 (Product composition). Given indexed signature schemes (KG1,S1,V1) and
(KG2,S2, E2) defined over spaces (M1,PK1,SK1,SG1, I1) and (M2,PK2 =M1,SK2,SG2, I2),
their product composition is an indexed signature scheme defined over:

• the message space M =M2,

• the public key space PK = PK1,

• the secret key space SK = SK1 × (PK2 × SK2)I1,

• the signature space SG = SG1 × SG2,

• the index space I = I1 × I2,

by the following algorithms:

• key generation KG(1n) is

((pk, sk)
$← KG1(1n); (for i ∈ I1 do (sk′i, pk

′
i)

$← KG2(1n)); (pk, (sk, (pk′i, sk
′
i)i∈I1)));

• indexed signing S((sk, (pk′i, sk
′
i)i∈I1), (i1, i2),M) is

(σ1 = S1(sk, i1, pk
′
i1);σ2 = S2(sk′i1 , i2,M); (σ1, σ2));

• public key extraction (if applicable) E((i1, i2),M, (σ1, σ2)) is

(e2 ← E2(i2,M, σ2); E1(i1, e2, σ1));

• verification V(pk, (i1, i2),M, (σ1, σ2)) is (e2 ← E2(i2,M, σ2);V1(pk, i1, e2, σ1)).
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Remark Thanks to the seed transformation (Section 6.3), the |I1| key pairs of scheme 2
can be computed on demand by the signing algorithm. This makes the scheme more practical
than a basic scheme over I (e.g. a Merkle tree of height log2 |I|), because key generation
is |I1| times faster and the secret key is reduced to a small seed. We note that the seed
transformation works as long as all seed-based secret values in the construction use distinct
indices. For example, one can use the addressing scheme of SPHINCS [BHH+15].

Theorem 13. Let (KG1,S1,V1) and (KG2,S2,V2) be indexed signature schemes. We consider
the following resources: the time τ , the number of signature queries q, the maximal number
of signature queries per index qi, and unspecified resources ξ specific to (KG,S,V). The
unforgeability of their product composition (KG,S,V) can be bounded by the unforgeability of
(KG1,S1,V1) and (KG2,S2,V2):

InSecEU-CMA((KG,S,V); τ, q, qi, ξ)

≤ InSecEU-CMA((KG1,S1,V1); τ ′, q, q′i, ξ) + |I1|InSecEU-CMA((KG2,S2,V2); τ ′, q, qi, ξ)

where q′i = 1 and τ ′ = τ + c · q for some constant c.

Proof. We follow the proof by Malkin et al. [MMM02]. Given an adversary A against the
product composition, a successful forgery happens in two cases:

• the extracted public key E2(i2,M, σ2) matches with pk′i1 , and we can construct an ad-
versary B that uses A against scheme 2; more precisely, given a challenge for the scheme
2, B guesses an index i1 ∈ I1 and places the challenge at this index; the index is correct
w.r.t. the forgery with probability 1/|I1|,

• the extracted public key E2(i2,M, σ2) does not match, and we can construct an adversary
C that uses A against scheme 1; more precisely, C simulates the product scheme and
replaces the instance of scheme 1 by its challenge.

The bound follows.

6.6 Batch signing

We now analyze the batch signing scheme that uses a Merkle tree to gather several messages,
the root of which is signed by another signature scheme.

Definition 25 (Batch Merkle tree signature). Given a security parameter n, a height pa-
rameter h, a signature scheme (KG,S,V) defined over spaces (M = Bn,PK,SK,SG), and a
family Hn of hash functions H : B2

n → Bn, the batch Merkle tree signature scheme is defined
over:

• the message space M = Bn, the key spaces PK′ = PK and SK′ = SK,

• the signature space SG′ = SG × {1, . . . , 2h} ×Bh
n,

• the batch size N = 2h,

by the following algorithms:

70



• key generation KG′ = KG;

• multi-message signing S ′(sk, (M1, . . . ,M2h)) is

(R← Merkle-root(H,M1, . . . ,M2h);σ ← S(sk,R);

(σ, i,Merkle-auth(H,M1, . . . ,M2h , i))1≤i≤2h);

• public key extraction (if applicable) E ′(M, (σ, i, A)) is

(R← Merkle-extract(H, (i,M), A); E(R, σ));

• verification V ′(pk,M, (σ, i, A)) is (R← Merkle-extract(H, (i,M), A);V(pk,R, σ)).

Remark Although the above definition requires a fixed number of messages 2h, one can in
practice sign a variable number of messages, e.g. by using a L-tree instead of a Merkle tree.

Theorem 14. Let Hn be a hash function family and (KG,S,V) be a signature scheme. We
consider the following resources: the time τ , the number of messages queried to the signature
scheme q, the number of batch queries qb, the number of queries to Hn qH , and unspecified
resources ξ specific to (KG,S,V). The unforgeability of the batch Merkle tree signature scheme
based on Hn and (KG,S,V) can be bounded by the unforgeability of (KG,S,V) and the collision
resistance of Hn:

InSecEU-CMA(BATCH(Hn, (KG,S,V)); τ, q, qb, qH , ξ)

≤ InSecEU-CMA((KG,S,V); τ ′, q′, ξ) + InSecCR(Hn; τ ′, q′H)

where q′ = qb, q
′
H = qH + q − qb and τ ′ = τ + c · q for some constant c.

Essentially, a forger either breaks the underlying signature scheme or finds a collision in
one of the signed Merkle trees.

Proof. Let adversary A be a successful forger, that outputs a signature (σ, i, A) for a message
Mi. If we let R = Merkle-extract(H, (i,Mi), A), there are two cases:

• R was not queried to the underlying signature oracle S, and we can construct an adver-
sary B that uses A to forge a signature for (KG,S,V),

• R was queried to S with some Merkle tree, and in particular a message Ni 6= Mi was
queried at index i with some authentication path B. Then by Lemma 10 there exists a
collision for H between the trees (Mi, A) and (Ni, B) and we can construct an adversary
C that uses A to find this collision.

Regarding resources, adversary B requests qb signatures to (KG,S,V), and both B and C make
q − qb calls to H to generate the Merkle trees, with an additional time proportional to the
number of messages. The bound follows.
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Chapter 7

Gravity: a family of stateless
hash-based signature schemes

In this section, we present Gravity, a family of stateless hash-based signature schemes which
benefits from our improvements described in Chapter 3. We first describe algorithms for key
generation, signing and verification, then propose practical sets of parameters. Last, we
explain strategies to optimize the implementation of Gravity.

7.1 Specification

7.1.1 Parameters

An instance of the Gravity signature scheme requires the following parameters:

• the hash output bit length n, a positive integer,

• the Winternitz depth w, a power of two such that w ≥ 2 and log2w divides n,

• the PORS set size t, a positive power of two,

• the PORS subset size k, a positive integer such that k ≤ t,

• the internal Merkle tree height h, a positive integer,

• the number of internal Merkle trees d, a non-negative integer,

• the cache height c, a non-negative integer,

• the batching height b, a non-negative integer,

• the message space M, usually a subset of bit strings {0, 1}∗.

From these parameters are derived:

• the Winternitz width ` = µ+ blog2 (µ(w − 1))/ log2wc+ 1 where µ = n/ log2w,

• the PORS set T = {0, . . . , t− 1},
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• the address space A = {0, . . . , d} × {0, . . . , 2c+dh − 1} × {0, . . . ,max(`, t)− 1},

• the public key space PK = Bn,

• the secret key space SK = B2
n,

• the signature space SG = Bn ×Bk
n ×B

≤k(log2 t−blog2 kc)
n × (B`

n ×Bh
n)
d ×Bc

n,

• the batched signature space SGB = Bb
n × {0, . . . , 2b − 1} × SG,

• the public key size, of n bits,

• the secret key size, of 2n bits,

• the maximal signature size, of

sigsz = (1 + k + k(log2 t− blog2 kc) + d(`+ h) + c)n bits

• the maximal batched signature size, of sigsz + bn+ b bits.

We recall that Bn = {0, 1}n denotes the set of n-bit strings.

7.1.2 Primitives

An instance of the Gravity signature scheme is based on four primitives, that depend on
the parameters n and M:

• a length-preserving hash function F : Bn → Bn,

• a length-halving hash function H : B2
n → Bn,

• a pseudo-random function G : Bn ×A → Bn (that takes as input a seed and address),

• a general-purpose hash function H∗ :M→ Bn.

For example, with n = 256, one can take: 6-round Haraka-v2-256 as F , 6-round Haraka-
v2-512 as H, a variant of AES-256 as G, and SHA-256 as H∗.

7.1.3 Useful algorithms

We first define useful algorithms that are building blocks for the Gravity scheme.

Operations on addresses

We now detail the addressing scheme in the hyper-tree structure. Each WOTS and PORST
instance is given a unique address that allows to generate its secret values on demand. Each
address contains:

• a layer 0 ≤ i ≤ d in the hyper-tree, where 0 is the root layer, d − 1 is the last WOTS
layer and d is the PORST layer;

• an instance index j in the layer, with 0 ≤ j < 2c+(i+1)h if i < d and 0 ≤ j < 2c+dh if
i = d;
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• a counter λ in the instance, with 0 ≤ λ < ` if i < d and 0 ≤ λ < t if i = d.

We define the following functions to manipulate addresses.

• The function make-addr : {0, . . . , d} × N → A takes as input a layer i ∈ {0, . . . , d} and
an index j ∈ N and returns the address a = (i, j mod 2c+dh, 0) ∈ A.

• The function incr-addr : A×N→ A takes as input an address a = (i, j, λ) and an integer
x and returns the address a′ = (i, j, λ+ x) ∈ A with the counter incremented by x.

L-tree

We recall the function L-tree : B+
n → Bn that takes as input a sequence of hashes xi ∈ Bn

and returns the associated L-tree root r ∈ Bn (Definition 15). It is defined by recurrence as
follows. 

L-tree(x1) = x1

L-tree(x1, . . . , x2i+2) = L-tree(H(x1, x2), . . . ,H(x2i+1, x2i+2))

L-tree(x1, . . . , x2i+3) = L-tree(H(x1, x2), . . . ,H(x2i+1, x2i+2), x2i+3)

Winternitz checksum

We recall the function checksummed : Bn → {0, . . . , w − 1}` that takes as input a hash x ∈ Bn
and returns ` integers xi, computed as follows (Definition 13).

• For i ∈ {1, . . . , µ} compute zi ← substr(x, (i − 1) log2w, log2w), where substr(x, j,m)
denotes the substring of x of length m bits starting at bit index 0 ≤ j < |x|.

• For i ∈ {1, . . . , µ} interpret zi as the big-endian encoding of a number 0 ≤ xi < w.

• Compute the checksum C =
∑µ

i=1w − 1− xi.

• For i ∈ {µ+1, . . . , `} compute xi = bC/wi−µ−1c mod w. In other words, (xµ+1, . . . , x`)
is the base-w little-endian encoding of the checksum C.

Winternitz public key generation

The function WOTS-genpk : Bn×A → Bn takes as input a secret seed ∈ Bn and a base address
a ∈ A, and outputs the associated Winternitz public key p ∈ Bn, computed as follows.

• For i ∈ {1, . . . , `} compute the secret value si ← G(seed, incr-addr(a, i− 1)).

• For i ∈ {1, . . . , `} compute the public value pi ← Fw−1(si) where the Fw−1 denotes the
function F iterated w − 1 times.

• Compute p← L-tree(p1, . . . , p`).
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Winternitz signature

The function WOTS-sign : Bn × A × Bn → B`
n takes as input a secret seed ∈ Bn, a base

address a ∈ A and a hash x ∈ Bn, and outputs the associated Winternitz signature σ ∈ B`
n,

computed as follows.

• For i ∈ {1, . . . , `} compute the secret value si ← G(seed, incr-addr(a, i− 1)).

• Compute (x1, . . . , x`)← checksummed(x).

• For i ∈ {1, . . . , `} compute the signature value σi ← F xi(si).

Winternitz public key extraction

The function WOTS-extractpk : Bn ×B`
n → Bn takes as input a hash x ∈ Bn and a signature

σ ∈ B`
n, and outputs the associated Winternitz public key p ∈ Bn, computed as follows.

• Compute (x1, . . . , x`)← checksummed(x).

• For i ∈ {1, . . . , `} compute the public value pi ← Fw−1−xi(σi).

• Compute p← L-tree(p1, . . . , p`).

Merkle tree root

The function Merkle-rooth : B2h
n → Bn takes as input 2h leaf hashes xi, and outputs the

associated Merkle tree root r ∈ Bn. It is defined by recurrence on h as:

• Merkle-root0(x0) = x0,

• Merkle-rooth+1(x0, x1, . . . , x2i, x2i+1) = Merkle-rooth(H(x0, x1), . . . ,H(x2i, x2i+1)).

Merkle tree authentication

The function Merkle-authh : B2h
n × {0, . . . , 2h − 1} → Bh

n takes as input 2h leaf hashes xi
and a leaf index 0 ≤ j < 2h, and outputs the associated Merkle tree authentication path
(a1, . . . , ah) ∈ Bh

n. It is defined by recurrence on h as:

• Merkle-auth1(x0, x1, j) = a1 ← xj⊕1 where ⊕ denotes the bitwise XOR operation on
non-negative integers,

• Merkle-authh+1(x0, x1, . . . , x2i, x2i+1, j) is{
a1 ← xj⊕1

a2, . . . , ah+1 ← Merkle-authh(H(x0, x1), . . . ,H(x2i, x2i+1), bj/2c)
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Merkle tree root extraction

The function Merkle-extracth : Bn × {0, . . . , 2h − 1} × Bh
n → Bn takes as input a leaf hash

x ∈ Bn, a leaf index 0 ≤ j < 2h and an authentication path (a1, . . . , ah) ∈ Bh
n, and outputs

the associated Merkle tree root r ∈ Bn. It is defined by recurrence on h as:

• Merkle-extract0(x, j) = x,

• Merkle-extracth+1(x, j, a1, . . . , ah+1) = Merkle-extracth(x′, bj/2c, a2, . . . , ah+1) where

x′ =

{
H(x, a1) if j mod 2 = 0

H(a1, x) if j mod 2 = 1

Octopus authentication

The function Octopus-authh : B2h
n ×{0, . . . , 2h − 1}k → B∗n×Bn takes as input 2h leaf hashes

xi and 1 ≤ k ≤ 2h distinct leaf indices 0 ≤ ji < 2h sorted in increasing order, and outputs the
associated octopus authentication nodes oct ∈ B∗n and the octopus root r ∈ Bn. It is defined
by recurrence on h as:

• Octopus-auth0(x0, j1) = (∅, x0),

• Octopus-authh+1(x0, x1, . . . , x2i, x2i+1, j1, . . . , jk) is computed as

j′1, . . . , j
′
κ ← unique(bj1/2c, . . . , bjk/2c)

oct′, r ← Octopus-authh(H(x0, x1), . . . ,H(x2i, x2i+1), j′1, . . . , j
′
κ)

z1, . . . , z2κ−k ← (j1 ⊕ 1, . . . , jk ⊕ 1) \ (j1, . . . , jk)

a1, . . . , a2κ−k ← (xz1 , . . . , xz2κ−k)

oct← (a1, . . . , a2κ−k, oct
′)

where unique() removes duplicates in a sequence, and A \B denotes the set difference.

Octopus root extraction

The function Octopus-extracth,k : Bk
n × {0, . . . , 2h − 1}k ×B∗n → Bn ∪ {⊥} (with 1 ≤ k ≤ 2h)

takes as input k leaf hashes xi ∈ Bn, k leaf indices 0 ≤ ji < 2h and an authentication octopus
oct ∈ B∗n, and outputs the associated Merkle tree root r ∈ Bn, or ⊥ if the number of hashes
in the authentication octopus is invalid. It is defined by recurrence on h as:

• Octopus-extract0,1(x1, j1, oct) =

{
x1 if oct = ∅
⊥ otherwise

,

• Octopus-extracth+1,k(x1, . . . , xk, j1, . . . , jk, oct) is computed as
j′1, . . . , j

′
κ ← unique(bj1/2c, . . . , bjk/2c)

L← Octopus-layer((x1, j1), . . . , (xk, jk), oct)

⊥ if L = ⊥
Octopus-extracth,κ(x′1, . . . , x

′
κ, j
′
1, . . . , j

′
κ, oct

′) if L = (x′1, . . . , x
′
κ, oct

′)
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where Octopus-layer() is defined by recurrence as:

• Octopus-layer(x1, j1, oct) =


⊥ if oct = ∅
H(x1, a), oct′ if oct = (a, oct′) ∧ j1 mod 2 = 0

H(a, x1), oct′ if oct = (a, oct′) ∧ j1 mod 2 = 1

• Octopus-layer(x1, j1, x2, j2, . . . , xk, jk, oct) is
H(x1, x2),Octopus-layer(x3, j3, . . . , xk, jk, oct) if j1 ⊕ 1 = j2

⊥ if j1 ⊕ 1 6= j2 ∧ oct = ∅
H(x1, a),Octopus-layer(x2, j2, . . . , xk, jk, oct

′) if oct = (a, oct′) ∧ j1 mod 2 = 0

H(a, x1),Octopus-layer(x2, j2, . . . , xk, jk, oct
′) if oct = (a, oct′) ∧ j1 mod 2 = 1

PRNG to obtain a random subset

The function PORS : Bn×Bn → N×T k takes as input a salt s ∈ Bn and a hash x ∈ Bn, and
outputs a hyper-tree index λ ∈ N and k distinct indices xi, computed as follows.

• Compute g ← H(s, x).

• Let a← make-addr(0, 0).

• Compute b ← G(g, a) and interpret it as the big-endian encoding of an integer β ∈
{0, . . . , 2n − 1}.

• Compute λ ← β mod 2c+dh. In other words, λ is the big-endian interpretation of the
c+ dh last bits of the block b.

• Initialize X ← ∅ and j ← 0.

• While |X| < k do the following:

– increment j ← j + 1,

– compute b← G(g, incr-addr(a, j)),

– split b into ν = bn/ log2 tc blocks of log2 t bits, as bi = substr(b, (i−1) log2 t, log2 t),

– for i ∈ {1, . . . , ν} interpret bi as the big-endian encoding of an integer bi ∈ T ,

– for i ∈ {1, . . . , ν}, if |X| < k compute X ← unique(X, bi).

• Compute (x1, . . . , xk)← sorted(X).

PORST signature

The function PORST-sign : Bn×A×T k → Bk
n×B∗n×Bn takes as input a secret seed ∈ Bn, a

base address a ∈ A and k sorted indices xi ∈ T , and outputs the associated PORST signature
(σ, oct) ∈ Bk

n ×B∗n and PORST public key p ∈ Bn, computed as follows.

• For i ∈ {1, . . . , t} compute the secret value si ← G(seed, incr-addr(a, i− 1)).

• For j ∈ {1, . . . , k} set the signature value σj = sxj .

• Compute the authentication octopus and root as

oct, p← Octopus-authlog2 t
(s1, . . . , st, x1, . . . , xk)
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PORST public key extraction

The function PORST-extractpk : T k × Bk
n × B∗n → Bn ∪ {⊥} takes as input k indices xi ∈ T

and a PORST signature (σ, oct) ∈ Bk
n × B∗n, and outputs the associated PORST public key

p ∈ Bn, or ⊥ if the authentication octopus is invalid, computed as follows.

• Compute the octopus root p← Octopus-extractlog2 t,k
(σ, x1, . . . , xk, oct).

7.1.4 Signature scheme

We now specify the (KG,S,V) algorithms for Gravity, as well as batched variants (KG,SB,VB).
To simplify, we specify them without secret key caching by the signer. Indeed, this caching
optimization is internal to the signer – to increase signing speed – and does not change the
public results (public key, signature). We discuss this optimization in Section 7.3.

Key generation

KG takes as input 2n bits of randomness and outputs the secret key sk ∈ B2
n and the public

key pk ∈ Bn.

• Generate the secret key from 2n bits of randomness sk = (seed, salt)
$← B2

n.

• For 0 ≤ i < 2c+h generate a Winternitz public key

pi ←WOTS-genpk(seed,make-addr(0, i))

• Generate the public key pk ← Merkle-rootc+h(x0, . . . , x2c+h−1).

Signature

S takes as input a hash m ∈ Bn and a secret key sk = (seed, salt), and outputs a signature
computed as follows.

• Compute the public salt s← H(salt,m).

• Compute the hyper-tree index and random subset as j, (x1, . . . , xk)← PORS(s,m).

• Compute the PORST signature and public key

(σd, oct, p)← PORST-sign(seed,make-addr(d, j), x1, . . . , xk)

• For i ∈ {d− 1, . . . , 0} do the following:

– compute the WOTS signature σi ←WOTS-sign(seed,make-addr(i, j), p),

– compute p←WOTS-extractpk(p, σi),

– set j′ ← bj/2hc,
– for u ∈ {0, . . . , 2h − 1} compute the WOTS public key

pu ←WOTS-genpk(seed,make-addr(i, 2hj′ + u))
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– compute the Merkle authentication Ai ← Merkle-authh(p0, . . . , p2h−1, j − 2hj′),

– set j ← j′.

• For 0 ≤ u < 2c+h compute the WOTS public key

pu ←WOTS-genpk(seed,make-addr(0, u))

• Compute the Merkle authentication

(a1, . . . , ah+c)← Merkle-authh+c(p0, . . . , p2h+c−1, 2
hj)

• Set A← (ah+1, . . . , ah+c).

• The signature is (s, σd, oct, σd−1, Ad−1, . . . , σ0, A0, A).

Verification

V takes as input a hash m ∈ Bn, a public key pk ∈ Bn and a signature

(s, σd, oct, σd−1, Ad−1, . . . , σ0, A0, A)

and verifies it as follows.

• Compute the hyper-tree index and random subset as j, (x1, . . . , xk)← PORS(s,m).

• Compute the PORST public key p← PORST-extractpk(x1, . . . , xk, σd, oct).

• If p = ⊥, then abort and return 0.

• For i ∈ {d− 1, . . . , 0} do the following:

– compute the WOTS public key p←WOTS-extractpk(p, σi),

– set j′ ← bj/2hc,
– compute the Merkle root p← Merkle-extracth(p, j − 2hj′, Ai),

– set j ← j′.

• Compute the Merkle root p← Merkle-extractc(p, j, A).

• The result is 1 if p = pk, and 0 otherwise.

Batch signature

SB takes as input a sequence of messages (M1, . . . ,Mi) ∈ Mi with 0 < i ≤ 2b and a secret
key sk = (seed, salt) along with its secret cache, and outputs i signatures σj , computed as
follows.

• For j ∈ {1, . . . , i} compute the message digest mj ← H∗(Mj).

• For j ∈ {i+ 1, . . . , 2b} set mj ← m1.

• Compute m← Merkle-rootb(m1, . . . ,m2b).

• Compute σ ← S(sk,m).

• For j ∈ {1, . . . , i} the j-th signature is σj ← (j,Merkle-authb(m1, . . . ,m2b , j), σ).

For b = 0, we simplify SB(sk,M) to S(sk,H∗(M)).
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Batch verification

VB takes as input a public key pk, a message M ∈ M and a signature (j, A, σ), and verifies
it as follows.

• Compute the message digest m← H∗(M).

• Compute the Merkle root m← Merkle-extractb(m, j,A).

• The result is V(pk,m, σ).

For b = 0, we simplify VB(pk,M, σ) to V(pk,H∗(M), σ).

7.2 Proposed instances

We now propose concrete instances of parameters and primitives for Gravity.

7.2.1 Parameters

We propose the following parameters.

• Hash output n = 256 bits, to aim for 128 bits of security for collision-resistance, both
classical and quantum.

• Winternitz depth w = 16, a good trade-off between size and speed often chosen in
similar constructions (XMSS, SPHINCS).

• A PORS set size t = 216, here again a good trade-off between size and speed chosen in
SPHINCS.

Given these, we propose several sets of parameters, summarized on Table 7.1.

• Three modes suitable for the NIST call for proposals for post-quantum signature schemes.
Submission requirements mandate a capacity of at least 264 messages per key pair [NIS16,
Section 4.A.4]. We propose several trade-offs between signing time and signature size.

• A mode suitable to sign up to 250 messages, for comparison with SPHINCS [BHH+15].

• A batched mode, suitable to sign up to 240 batches. This is a reasonable alternative
for a capacity of 250 messages (with batches of 210 messages), for applications that can
handle batching.

• A small mode with a capacity of 210 messages, for applications that don’t need to sign
many messages.

Verification times are similar in all cases, and much faster than signing.
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name log2 t k h d c sigsz capacity

NIST-fast 16 28 5 10 14 35168 264

NIST 16 28 8 6 16 26592 264

NIST-slow 16 28 14 4 8 22304 264

fast 16 32 5 7 15 28928 250

batched 16 32 8 3 16 20032 240

small 16 24 5 1 10 12640 210

Table 7.1: Proposed parameters for Gravity, suitable for 128 bits of post-quantum security.
The capacity is the number of messages (or batches of messages) that can be signed per key
pair. The maximal signature size sigsz is given in bytes, and does not include batching. Public
keys are always 32 bytes, with secret keys of 64 bytes.

7.2.2 Primitives

For the hash functions, we propose to use a 6-round version of Haraka-v2-256 as F , and
a 6-round version of Haraka-v2-512 as H. We extend the original Haraka-v2 construc-
tion [KLMR16] with an additional round; the round constants for this new round are recalled
in Section 3.4.1.

For the general-purpose hash function H∗, we propose to use BLAKE2b [ANWW13].

Construction of G

We propose a construction based on AES-256 for G, valid as long as the parameters verify
the constraints c+ dh ≤ 64 and max(`, t) ≤ 231. More precisely, given a seed s ∈ Bn and an
address a = (i, j, λ) ∈ A, we compute G(s, a) as follows.

• Compute P0 ← djc64||dic32||d2λc32 and P1 ← djc64||dic32||d2λ+ 1c32, where dxcm de-
notes the (bytewise) little-endian encoding of x as an m-bit number.

• The result is AES-256(s, P0)||AES-256(s, P1), i.e. the encryption of P0 and P1 with
key s.

We recall that due to the constraints on (c, d, h), the in-layer index j verifies 0 ≤ j < 2c+dh ≤
264, and the counter λ verifies 2λ+ 1 < 232.

This construction is essentially AES-256 in counter mode, except that we need two AES
blocks for a 256-bit result. We use little-endian encoding of the counter λ because this allows
to use optimized addition arithmetic on processors supporting SSE2 instructions. Also, we
note that the seed s is the same throughout the hyper-tree, which allows a signer to cache
the AES round keys.

7.2.3 Security

Security of Gravity relies on the collision resistance of F , H, H∗, on the undetectability and
one-wayness of F and on the pseudo-randomness of G. Security reductions of Chapter 6 give
lower bounds on the complexity of attacks. We now outline some concrete attacks.
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First, one can try to find two messages that collide for H∗, because their signatures would
be identical. A generic birthday attack has a complexity of 128 bits for n = 256.

Second, one can try to break the non-adaptive subset-resilience of G. Here again, our
choices of parameters guarantee a complexity of at least 128 bits for known generic attacks
(see Chapter 4).

Third, if two secret values (in any of the WOTS and PORST instances) are identical,
knowing one allows to forge another. With n = 256, this gives 128 bits of security if the secret
values are chosen independently and uniformly. However, our construction with AES-256
guarantees that all secret values are distinct throughout the construction, because G is in fact
a permutation!

7.3 Optimized implementation

We now outline strategies that can be applied to implement Gravity in an optimized fashion.

7.3.1 Primitives

We can first apply optimizations specific to the chosen primitives.

Caching of AES round keys

To generate secret values with G, the same seed is used throughout the construction. With
our implementation based on AES-256 in counter mode, this seed is the AES key. To avoid
recomputing them for each block, we can cache the AES round keys throughout the scheme.

Haraka pipelining

The Haraka hash function [KLMR16] was designed to support parallel computation on several
inputs for CPUs supporting optimized instructions, e.g. Intel’s Haswell and Skylake micro-
architectures. Typically, a CPU core can evaluate Haraka on 4 to 8 inputs at the same time,
depending on the micro-architecture. Hence, careful scheduling of hash evaluations is a way
to improve the speed of Gravity.

In particular, the WOTS construction uses many long chains of hashes. A naive imple-
mentation evaluates the chains one after another, which does not leverage 4-way (or 8-way)
hashing. On the other end, a more clever implementation evaluates the chains level by level,
using the pipelined versions of Haraka. Likewise, Merkle trees can be compressed level by
level.

An even more efficient strategy is to fully compute the first 4 chains (using 4-way Haraka),
then the next 4 chains, and so on. Indeed, this avoids expensive loads and stores between CPU
registers and the rest of the memory. This is even more effective for mask-less constructions,
because there is no need to load a mask from memory after each iteration. We improved
the optimized Haraka implementation1 to support computation of mask-less hash chains,
removing useless store and load instructions at each iteration. This proved to be the most
efficient strategy.

1Available at https://github.com/kste/haraka
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AES-NI

Recent processors (e.g. from Intel) support so-called AES-NI instructions that compute AES
rounds or key schedule faster than manually (and in constant time). This can be used to
speed-up computation of hash function such as Haraka. This also speeds-up computation
of AES-256 in counter mode, and in this case the counter can be incremented directly in
a 128-bit register thanks to SSE2 instructions – e.g. with the mm add epi32 intrinsic2 for a
32-bit counter. The performance benefits of AES-NI have been an important factor in our
choice of primitives.

7.3.2 Secret cache

As mentioned in Section 3.2, the top levels of the root Merkle tree can be cached by the
signer, as they are shared among all signatures. In particular, given the threshold c, the 2c

hash values at level c can be cached with 2cn bits of memory. Further, the levels above it
total only 2c − 1 additional hash values, so a good strategy is to save all values from levels 0
to c, with (2c+1 − 1)n bits of memory. For our sets of parameters proposed in Table 7.1, this
represents 16 KiB to 4 MiB of secret cache.

7.3.3 Multi-threading

To reduce signature size, the slower versions of Gravity use larger Merkle trees, at the
expense of key generation and signing times. To reduce the latency of these operations, we
can leverage multi-threading, especially in Merkle trees. Indeed, computing the root of Merkle
tree of height h can be distributed among 2τ threads as follows: split the tree into 2τ subtrees
of height h − τ (starting from the leaves), compute each subtree in a different thread, and
then compute the top τ layers in a single thread. The latency of this computation is now in
the order of 2h−τ + 2τ , instead of 2h.

This strategy is especially relevant in a batching context: instead of computing many
independent signatures in parallel the signer computes a single signature, which means that
many parallel threads of computation are available for one signature.

7.3.4 Cost estimation

We briefly estimate the cost of each operation (key generation, signing and verification) in
terms of function calls. We let aside calls to the general-purpose hash function H∗, whose
performance depends on the length of the message being signed.

Key generation We compute the top Merkle tree:

• 2c+h` calls to G to generate the WOTS secret values,

• 2c+h`(w − 1) calls to F to evaluate WOTS chains,

• 2c+h − 1 calls to H to compress the Merkle tree.

The bottleneck is the evaluation of WOTS hash chains.
2Intel’s intrinsics definitions are available at https://software.intel.com/sites/landingpage/

IntrinsicsGuide/
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Signing Assuming that the top c levels of the hyper-tree are cached, we compute a PORST
signature and d Merkle trees:

• 2 calls to H and a few calls to G to obtain the random subset of PORST,

• t calls to G to generate the PORST secret values,

• t− 1 calls to H to compress the PORST tree,

• d2h` calls to G to generate the WOTS secret values,

• ≤ d2h`(w − 1) calls to F to evaluate partial WOTS chains,

• d(2h − 1) calls to H to compress the d Merkle trees.

Here again the bottleneck is the evaluation of many WOTS hash chains.

Verification We verify a PORST instance and d Merkle trees:

• 1 call to H and a few calls to G to obtain the random subset of PORST,

• k calls to F to compute PORST public values,

• ≤ k(log2 t− blog2 kc) calls to H to compress octopus authentication nodes,

• ≤ d`(w − 1) calls to F to evaluate partial WOTS chains,

• c+ dh calls to H to compress Merkle authentication paths.

The bottleneck is again the evaluation of WOTS hash chains, but verification is much faster
than signing and key generation.

Take-away We can see that in all cases the bottleneck is on WOTS hash chains, so it is
worth focusing optimization efforts at this level.
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Conclusion

In this thesis, we have studied how to improve stateless hash-based signature schemes. These
schemes rely on a limited number of assumptions, that are the existence of collision-resistant,
one-way, undetectable and pseudo-random function families. This means that their security is
relatively well-understood, even against hypothetical adversaries with a quantum computer.
Besides, the stateless property gives some “misuse-resistance” guarantees for signers that
cannot reliably maintain a state over the lifetime of a key pair.

Another advantage of hash-based signatures is speed and simplicity of verification. On
the signer side, we have seen that several trade-offs are available between signature size,
computational resources, memory resources, as well as the planned number of signatures
issued by a key pair.

In this project, we proposed more secure constructions to reduce the size of stateless
hash-based signatures, without compromising on speed.

We first gave an extensive analysis of the subset-resilience problem. We showed that adap-
tive attacks are much more efficient than non-adaptive ones, and gave examples of forgeries
against the original HORS construction [RR02]. We then introduced weak message attacks,
that also apply in a non-adaptive scenario. We reviewed the security of multi-instance subset-
resilience as in SPHINCS, comparing several attack strategies.

We then proposed two new constructions. First, PRNG to obtain a random subset is a
variant of hash to obtain a random subset designed to avoid attacks against weak messages.
An version for SPHINCS allows to reduce the degrees of freedom of an adversary, by forcing
the selection of a hyper-tree leaf, which further increases the security margin. Second, octopus
allows to optimally authenticate multiple leaves in a Merkle tree. We evaluated the expected,
best-case and worst-case size benefits, showing that this can save around 2 KiB per signature
for SPHINCS on average.

We also explored new paradigms for hash-based signatures. Batch signing allows to re-
duce the total number of message signed, and in turn decrease signature sizes. We studied
how removing XOR masks in constructions leads to a simpler design without compromising
security, given that second-preimage resistance and collision resistance have similar generic
security levels against quantum computers [Ber09]. We showed that at the expense of a
reasonable secret cache, signature sizes can be reduced by a significant amount.

We leave open some fundamental questions for future work. First, is LWOTS an optimal
one-time signature scheme, in terms of signature size for a given message space and compu-
tation time? A conjecture by Bleichenbacher and Maurer [BM96a] is related to the question,
although it considers the number of hash evaluations rather than the signature size. Sec-
ond, is there a better few-time signature scheme than PORST with octopus authentication?
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There is little hope that a variant of BiBa [Per01] can perform better, given that HORS was
described as “better than BiBa”, and simple estimations seem to agree with this statement.

Regarding implementation, it would be interesting to study whether large Merkle trees
of WOTS public keys could benefit from graphics cards, thanks to general-purpose GPU
(GPGPU) programming. Indeed, these trees consist of a large number of similar computations
on independent data: only a small secret seed is shared, and each WOTS instance is fully
determined by its address. This could further speed-up computations for the signer, allowing
in turn to use larger trees for smaller signature sizes.

The choice of primitives is also paramount to the performance of hash-based signature
schemes. Haraka [KLMR16] was designed specifically for this target application in mind, and
as such it came with performance improvements over general-purpose hash functions. This is
why an important question is whether there exist more efficient (yet secure!) constructions,
especially in the context of hash chains. More tests on more platforms would be needed
to determine whether 5-round Haraka with masks loaded from memory is slower or faster
than 6-round Haraka without masks. Further cryptanalysis would also be welcomed in this
direction, as special-purpose hash functions such as Haraka are still young.

This thesis will be the basis for a proposal to the post-quantum cryptography standard-
ization process held by NIST [NIS16].
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