Diving into the Portable Document Format

Toulouse Hacking Convention 2017

Guillaume Endignoux
@gendignoux

Friday 3¢ March, 2017

1/34

https://twitter.com/gendignoux

Portable Document Format 7

PDF timeline:
@ 1991-1993: inception and first release by Adobel

@ 2008: ISO specification released (PDF 1.7) = alternative
readers: Evince, PDF.js, Chrome...

@ Soon? ISO specification for PDF 2.0

1
https://acrobat.adobe.com/us/en/why-adobe/about-adobe- pdf.html
2/34

https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html

Portable Document Format 7

PDF timeline:
@ 1991-1993: inception and first release by Adobel

@ 2008: ISO specification released (PDF 1.7) = alternative
readers: Evince, PDF.js, Chrome...

@ Soon? ISO specification for PDF 2.0

Many features (not all portable):

interactive forms

(]

encryption
scripting: JavaScript, Flash
multimedia: video, sound, 3D artwork

1
https://acrobat.adobe.com/us/en/why-adobe/about-adobe- pdf.html
2/34

https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html

Portable Document Format 7

A commonly used format, but many security issues:
@ 500+ reported vulnerabilities in Adobe Reader? (since 1999).
@ Variations between implementations.

e Syntax facilitates polymorphism, e.g. PoC||GTFO (PDF+ZIP,
PDF+JPEG...).

@ SHA-1 collisions...

| worked on PDF validation: Caradoc® project started in 2015 (at
ANSSI), paper & presentation at LangSec Workshop 20164.

2http://www.cvedetails. com
*nttps://github.com/ANSSI-FR/caradoc

“http://spwl6.langsec.org/
3/34

http://www.cvedetails.com
https://github.com/ANSSI-FR/caradoc
http://spw16.langsec.org/

Table of contents

@ Introduction to PDF syntax
© Security problems: case studies

© Caradoc: 2 years of PDF validation

4/34

Table of contents

@ Introduction to PDF syntax

5/34

PDF syntax 101

A PDF document is made of objects. Textual format, similar to
JSON but different syntax:

@ null

@ booleans: true, false

@ numbers: 123, -4.56

@ strings: (foo)

@ names: /bar

@ arrays: [1 2 3], [(foo) /bar]

o dictionaries: << /key (value) /foo 123 >>
@ references: 1 0 obj ... endobjand 1 O R

@ streams: << ... >> stream ... endstream

6/34

Structure of a PDF file

PDF-1.7

1 0 obj
<< /Type /Catalog /Pages 2 0 R >> |«
endobj

Header
Object
Object

2 0 obj
<< /Type /Pages /Count 1 /Kids [3 0 R] >>
endobj

xref
06
0000000000 65536 f
0000000009 00000 n
0000000060 00000 n |

Reference table

Trailer
End-of-file

trailer
<< /Size 6 /Root 1 0 R >>

startxref
428
KEOF

TN

Organization of a simple PDF file.

7/34

Structure of a PDF file

More complex structures:
@ incremental updates,
@ object streams,

@ linearization.

 [xrer
/ 06
Header g 6536 £ <
00000 n
Objects /0000000060 00000 n
Original file S |irater
& . / << /Size 6 /Root 1 0 R >>
Table + trailer #1
startxref
- w428
End-of-file #1 P
Objects e
| | 03
ncrementa e . 5 e
able + trailer 0000000567 00001 n
update # N oo
End-of-file #2 0000001234 00000 1 [
trailer
<< /Size 7 /Root 11 R /Prev 428 >>
N\ |startares
Yiawr
YIEOF

Incremental update.

8/34

Logical structure of a PDF file

Document of 17 pages (about 1000 objects).

9/34

Graphical instructions

Vector graphics = low-level instructions, stored in a stream. Some
examples:

set font ABC in size 10: /ABC 10 Tf

set blue color (RGB): 0 0 1 rg

draw text: (Hello world) Tj

move to (x,y) = (5,10): 5 10 m

draw line to (15,20): 15 20 1

| made a cheat sheet:
https://github.com/gendx/pdf-cheat-sheets

10/34

https://github.com/gendx/pdf-cheat-sheets

Draw your own PDF!

Creating reference tables/streams is error-prone and boring...

Python script to automate the process:
https://github.com/gendx/pdf - corpus

Resulting PDF

template = contentstream

Hello world !

BT

0 700 Td

/F1 100 Tf

(Hello world !) Tj
ET

11/34

https://github.com/gendx/pdf-corpus

Table of contents

© Security problems: case studies

12/34

Security problems: case studies

Security problems arise from:
@ unclear or ambiguous specification,
@ complex or flawed designs in the standard,

@ improper input checking by PDF readers.

13/34

Security problems: case studies

Security problems arise from:
@ unclear or ambiguous specification,
@ complex or flawed designs in the standard,

@ improper input checking by PDF readers.

Some case studies:
@ malicious graph structures,
@ graphics instructions,

@ home-made encryption.

13/34

Graph organization

The graph of objects is organized into sub-structures, especially
trees.

Page tree.
[=

!)
Mok [P
L e]

14 /34

Graph organization

The table of contents uses doubly-linked lists.

Table of contents.
Catalog Outline root

Chapter Chapter Chapter
Section Section Section

15 /34

Problematic structure

Some PDF readers loop forever with an invalid structure...

Invalid table of contents.
Catalog Outline root

Chapter Chapter Chapter

Section Section Section

[Ea=as

16 /34

Problematic structure

This is a design flaw:
@ Complex structures everywhere, but PDF readers do not check

them...
@ Simpler design: array of references to store pages?

17 /34

Graphics instructions

Graphics instructions = core of the format = potential for many
bugs!

18 /34

Graphics instructions

Graphics instructions = core of the format = potential for many

@angealbertini fun fact: this page seems to

bugs!

break the preview ;)

arr 2.2 Getting Started
STAR RANDERS s]
=

18 /34

Graphics instructions

| tried to write a PDF optimizer, and found more weird bugs...

=m

5

19/34

Graphics instructions

What is in the graphics interpreter?

A simple example:

e Graphics state = font, colors, translations, etc. (e.g. font
modified by setfont, used by drawtext).

e Graphics state stack: push and pop operators to save &
restore graphics state.

What if we pop too much (stack underflow)?

20/ 34

Graphics instructions

Example® for Evince: unbalanced pop seems to stop the interpreter.

Pseudo-code: pop before Pseudo-code: pop after

pop setfont
setfont drawtext (Hello world !)
drawtext (Hello world !) pop

Hello world !

v

5ht:t:ps ://github.com/gendx/pdf- corpus/tree/master/corpus/contentstream/graphic-stack
21/34

https://github.com/gendx/pdf-corpus/tree/master/corpus/contentstream/graphic-stack

Demonstration

Demonstration

Loop in the outline structure

https://github.com/ANSSI-FR/caradoc/blob/master/test_files/negative/outlines/cycle.pdf

Polymorphic file

https://github.com/ANSSI-FR/caradoc/blob/master/test_files/negative/polymorph/polymorph.pdf

Poc||GTFO 0x13

https://www.alchemistowl.org/pocorgtfo/pocorgtfol3.pdf

22 /34

https://github.com/ANSSI-FR/caradoc/blob/master/test_files/negative/outlines/cycle.pdf
https://github.com/ANSSI-FR/caradoc/blob/master/test_files/negative/polymorph/polymorph.pdf
https://www.alchemistowl.org/pocorgtfo/pocorgtfo13.pdf

Demonstration

These problems may lead to several attacks:
o Attacks against the parser: denial of service, crash (or worse).

@ Evasion techniques: variations PDF reader vs. malware
detector.

23/34

PDF encryption supported since v1.1.

24 /34

PDF encryption supported since v1.1.

Based on 2 passwords.
@ User password P,: decrypt and view content.

e Owner password P,: unlock permissions (print, modify...) =
enforced only by compliant software (P, is enough to decrypt).

24 /34

PDF encryption supported since v1.1.

Based on 2 passwords.
@ User password P,: decrypt and view content.

e Owner password P,: unlock permissions (print, modify...) =
enforced only by compliant software (P, is enough to decrypt).

Security issues:

e Partial encryption: only strings and streams are encrypted,
general document structure is leaked...

e Ad-hoc key-derivation from passwords & checksums (based
on MD5+RC4).

24 /34

Home-made encryption

Complex derivation of keys from passwords.

@
P L@

A, C, E = MD5

B ~ RC4 ab »
D ~ MD5+RC4 '
O password O checksum (in file) Q salt (in file) O object key

Main problem: checksum O is deterministic function of passwords,
no salt! = 33% collisions for 478 files crawled from Internet...

25 /34

Table of contents

© Caradoc: 2 years of PDF validation

26 / 34

Caradoc validation

| worked on Caradoc, a PDF validator. Implementation in OCaml
from the PDF specification®.

Caradoc verifies the following:
e File syntax.
@ Objects consistency (type checking).
o Graph (page tree...).
@ Vector graphics instructions (syntax).

https://www.adobe.com/devnet/pdf/pdf _reference.html
27/ 34

https://www.adobe.com/devnet/pdf/pdf_reference.html

Caradoc validation

| worked on Caradoc, a PDF validator. Implementation in OCaml

from the PDF specification®.

Caradoc verifies the following:

e File syntax.

@ Objects consistency (type checking).

o Graph (page tree...).

@ Vector graphics instructions (syntax).

Validation workflow.

graph of
references

strict parser
relaxed parser

extraction of

normalization specific objects

© i rm—"
ype grap'h) graphl_cs — future !
checking checking instructions 1 work |
IISt Of no error
types detected

<

®https://www.adobe.com/devnet/pdf/pdf _reference.html

27 /34

https://www.adobe.com/devnet/pdf/pdf_reference.html

Syntax restriction

At syntax level, guarantee extraction of objects without ambiguity:
e Grammar formalization” (BNF).
@ Structure restrictions (no updates, no linearization, etc.).

@ Systematic rejection of “corrupted” files.

"nttps://github.com/ANSSI-FR/caradoc/tree/master/doc/grammar
28/34

https://github.com/ANSSI-FR/caradoc/tree/master/doc/grammar

Syntax restriction

At syntax level, guarantee extraction of objects without ambiguity:
e Grammar formalization” (BNF).
@ Structure restrictions (no updates, no linearization, etc.).

@ Systematic rejection of “corrupted” files.

When a conforming reader reads a PDF file with a
damaged or missing cross-reference table, it may
attempt to rebuild the table by scanning all the objects
in the file.

— ISO 32000-1:2008, annex C.2

"nttps://github.com/ANSSI-FR/caradoc/tree/master/doc/grammar
28/34

https://github.com/ANSSI-FR/caradoc/tree/master/doc/grammar

action

page
destination
annotation
resource
outline
content stream
font

name tree
other

Types of a 17-page document.

29/34

Real-world files: lessons learned

Real-world evaluation: 10K files collected from random queries
on a web search engine.

30/34

Real-world files: lessons learned

Real-world evaluation: 10K files collected from random queries
on a web search engine.

The strict parser rejects common features:

Feature % of files
incremental updates 65%
object streams 37%
free objects 28%
encryption 5%

= Workaround: normalize with relaxed parser first!

30/34

Real-world files: lessons learned

Validation after normalization.

. g type graph instructions no error
type checking checking] checking ™ found

9829 files

2105 files 1891 files

1575 files

Type-checker detected typos:
@ /Blacklsl instead of /BlackIsi,
@ /XObjcect instead of /XObject.

We identified incorrect tree structures in the wild.

31/34

Caradoc: main commands

Some useful caradoc commands:
o Get stats
$ caradoc stats file.pdf

e Validate
$ caradoc stats --strict file.pdf

e Normalize
$ caradoc cleanup file.pdf --out output.pdf

@ Interactive console Ul: explore objects, decode stream, search...
$ caradoc ui file.pdf

More on GitHub: https://github.com/ANSSI-FR/caradoc

32/34

https://github.com/ANSSI-FR/caradoc

Conclusion

e PDF is an old format (25+ years), not designed for simple
parsing = error-prone.

@ Producers make mistakes, readers try best-effort =
compatibility bugs, security holes...

@ We need cleaner, simpler and more robust file formats! = e.g.
Protocol Buffers®.

8https://developers.google.com/protocol-buffers/.
33/34

https://developers.google.com/protocol-buffers/

Conclusion

My PDF projects:
e Caradoc: github.com/ANSSI-FR/caradoc
@ Cheat sheet: github.com/gendx/pdf-cheat-sheets
@ PDF corpus: github.com/gendx/pdf-corpus

Some blog posts about PDF: https://gendignoux.com/blog/

Twitter: @gendignoux
GitHub: ©gendx

34 /34

https://github.com/ANSSI-FR/caradoc
https://github.com/gendx/pdf-cheat-sheets
https://github.com/gendx/pdf-corpus
https://gendignoux.com/blog/
https://twitter.com/gendignoux
https://github.com/gendx

	Introduction to PDF syntax
	Security problems: case studies
	Graph structure
	Demonstration
	Encryption

	Caradoc: 2 years of PDF validation
	Syntax restriction
	Type checking
	Implementation

