
Diving into the Portable Document Format
Toulouse Hacking Convention 2017

Guillaume Endignoux
@gendignoux

Friday 3rd March, 2017

1 / 34

https://twitter.com/gendignoux

Portable Document Format ?

PDF timeline:
1991-1993: inception and first release by Adobe1

2008: ISO specification released (PDF 1.7) ⇒ alternative
readers: Evince, PDF.js, Chrome...
Soon? ISO specification for PDF 2.0

Many features (not all portable):
interactive forms
encryption
scripting: JavaScript, Flash
multimedia: video, sound, 3D artwork
...

1
https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html

2 / 34

https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html

Portable Document Format ?

PDF timeline:
1991-1993: inception and first release by Adobe1

2008: ISO specification released (PDF 1.7) ⇒ alternative
readers: Evince, PDF.js, Chrome...
Soon? ISO specification for PDF 2.0

Many features (not all portable):
interactive forms
encryption
scripting: JavaScript, Flash
multimedia: video, sound, 3D artwork
...

1
https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html

2 / 34

https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html

Portable Document Format ?

A commonly used format, but many security issues:
500+ reported vulnerabilities in Adobe Reader2 (since 1999).
Variations between implementations.
Syntax facilitates polymorphism, e.g. PoC||GTFO (PDF+ZIP,
PDF+JPEG...).
SHA-1 collisions...

I worked on PDF validation: Caradoc3 project started in 2015 (at
ANSSI), paper & presentation at LangSec Workshop 20164.

2http://www.cvedetails.com
3https://github.com/ANSSI-FR/caradoc
4http://spw16.langsec.org/

3 / 34

http://www.cvedetails.com
https://github.com/ANSSI-FR/caradoc
http://spw16.langsec.org/

Table of contents

1 Introduction to PDF syntax

2 Security problems: case studies

3 Caradoc: 2 years of PDF validation

4 / 34

Table of contents

1 Introduction to PDF syntax

2 Security problems: case studies

3 Caradoc: 2 years of PDF validation

5 / 34

PDF syntax 101

A PDF document is made of objects. Textual format, similar to
JSON but different syntax:

null

booleans: true, false
numbers: 123, -4.56
strings: (foo)
names: /bar
arrays: [1 2 3], [(foo) /bar]

dictionaries: << /key (value) /foo 123 >>

references: 1 0 obj ... endobj and 1 0 R

streams: << ... >> stream ... endstream

6 / 34

Structure of a PDF file

Header
Object

Object
...

Reference table
Trailer

End-of-file

%PDF-1.7

1 0 obj
<< /Type /Catalog /Pages 2 0 R >>
endobj

2 0 obj
<< /Type /Pages /Count 1 /Kids [3 0 R] >>
endobj

xref
0 6
0000000000 65536 f
0000000009 00000 n
0000000060 00000 n
...

trailer
<< /Size 6 /Root 1 0 R >>

startxref
428
%%EOF

Organization of a simple PDF file.

7 / 34

Structure of a PDF file

More complex structures:
incremental updates,
object streams,
linearization.

Header
Objects

...
Table + trailer #1

End-of-file #1

Objects
...

Table + trailer #2

End-of-file #2

%PDF-1.7

xref
0 6
0000000000 65536 f
0000000009 00000 n
0000000060 00000 n
...
trailer
<< /Size 6 /Root 1 0 R >>

startxref
428
%%EOF

xref
0 3
0000000002 65536 f
0000000567 00001 n
0000000000 00001 f
6 1
0000001234 00000 n
trailer
<< /Size 7 /Root 1 1 R /Prev 428 >>

startxref
1347
%%EOF

Original file

Incremental
update

Incremental update.

8 / 34

Logical structure of a PDF file

Document of 17 pages (about 1000 objects).

9 / 34

Graphical instructions

Vector graphics = low-level instructions, stored in a stream. Some
examples:

set font ABC in size 10: /ABC 10 Tf

set blue color (RGB): 0 0 1 rg

draw text: (Hello world) Tj

move to (x , y) = (5, 10): 5 10 m

draw line to (15, 20): 15 20 l

...

I made a cheat sheet:
https://github.com/gendx/pdf-cheat-sheets

10 / 34

https://github.com/gendx/pdf-cheat-sheets

Draw your own PDF!

Creating reference tables/streams is error-prone and boring...

Python script to automate the process:
https://github.com/gendx/pdf-corpus

Source
template = contentstream

BT
0 700 Td
/F1 100 Tf
(Hello world !) Tj
ET

Resulting PDF

11 / 34

https://github.com/gendx/pdf-corpus

Table of contents

1 Introduction to PDF syntax

2 Security problems: case studies

3 Caradoc: 2 years of PDF validation

12 / 34

Security problems: case studies

Security problems arise from:
unclear or ambiguous specification,
complex or flawed designs in the standard,
improper input checking by PDF readers.

Some case studies:
malicious graph structures,
graphics instructions,
home-made encryption.

13 / 34

Security problems: case studies

Security problems arise from:
unclear or ambiguous specification,
complex or flawed designs in the standard,
improper input checking by PDF readers.

Some case studies:
malicious graph structures,
graphics instructions,
home-made encryption.

13 / 34

Graph organization

The graph of objects is organized into sub-structures, especially
trees.

Page tree.
Catalog Root of the page tree

Page 3Node Page 4

Page 1 Page 2

14 / 34

Graph organization

The table of contents uses doubly-linked lists.

Table of contents.

Catalog
Outline root

ChapterChapter Chapter

SectionSection Section

15 / 34

Problematic structure

Some PDF readers loop forever with an invalid structure...

Invalid table of contents.

Catalog
Outline root

ChapterChapter Chapter

SectionSection Section

16 / 34

Problematic structure

This is a design flaw:
Complex structures everywhere, but PDF readers do not check
them...
Simpler design: array of references to store pages?

17 / 34

Graphics instructions

Graphics instructions = core of the format ⇒ potential for many
bugs!

18 / 34

Graphics instructions

Graphics instructions = core of the format ⇒ potential for many
bugs!

18 / 34

Graphics instructions

I tried to write a PDF optimizer, and found more weird bugs...

19 / 34

Graphics instructions

What is in the graphics interpreter?

A simple example:
Graphics state = font, colors, translations, etc. (e.g. font
modified by setfont, used by drawtext).
Graphics state stack: push and pop operators to save &
restore graphics state.

What if we pop too much (stack underflow)?

20 / 34

Graphics instructions

Example5 for Evince: unbalanced pop seems to stop the interpreter.

Pseudo-code: pop before
pop
setfont
drawtext (Hello world !)

Pseudo-code: pop after
setfont
drawtext (Hello world !)
pop

PDF PDF

5
https://github.com/gendx/pdf-corpus/tree/master/corpus/contentstream/graphic-stack

21 / 34

https://github.com/gendx/pdf-corpus/tree/master/corpus/contentstream/graphic-stack

Demonstration

Demonstration

Loop in the outline structure
https://github.com/ANSSI-FR/caradoc/blob/master/test_files/negative/outlines/cycle.pdf

Polymorphic file
https://github.com/ANSSI-FR/caradoc/blob/master/test_files/negative/polymorph/polymorph.pdf

Poc||GTFO 0x13
https://www.alchemistowl.org/pocorgtfo/pocorgtfo13.pdf

22 / 34

https://github.com/ANSSI-FR/caradoc/blob/master/test_files/negative/outlines/cycle.pdf
https://github.com/ANSSI-FR/caradoc/blob/master/test_files/negative/polymorph/polymorph.pdf
https://www.alchemistowl.org/pocorgtfo/pocorgtfo13.pdf

Demonstration

These problems may lead to several attacks:
Attacks against the parser: denial of service, crash (or worse).
Evasion techniques: variations PDF reader vs. malware
detector.

23 / 34

Encryption

PDF encryption supported since v1.1.

Based on 2 passwords.
User password Pu: decrypt and view content.
Owner password Po : unlock permissions (print, modify...) ⇒
enforced only by compliant software (Pu is enough to decrypt).

Security issues:
Partial encryption: only strings and streams are encrypted,
general document structure is leaked...
Ad-hoc key-derivation from passwords & checksums (based
on MD5+RC4).

24 / 34

Encryption

PDF encryption supported since v1.1.

Based on 2 passwords.
User password Pu: decrypt and view content.
Owner password Po : unlock permissions (print, modify...) ⇒
enforced only by compliant software (Pu is enough to decrypt).

Security issues:
Partial encryption: only strings and streams are encrypted,
general document structure is leaked...
Ad-hoc key-derivation from passwords & checksums (based
on MD5+RC4).

24 / 34

Encryption

PDF encryption supported since v1.1.

Based on 2 passwords.
User password Pu: decrypt and view content.
Owner password Po : unlock permissions (print, modify...) ⇒
enforced only by compliant software (Pu is enough to decrypt).

Security issues:
Partial encryption: only strings and streams are encrypted,
general document structure is leaked...
Ad-hoc key-derivation from passwords & checksums (based
on MD5+RC4).

24 / 34

Home-made encryption

Complex derivation of keys from passwords.

Po A Ko B

Pu

O C

P, ID

Ku D U

E Ka,ba, b

A, C, E ≈ MD5
B ≈ RC4
D ≈ MD5+RC4

password checksum (in file) salt (in file) object key

Main problem: checksum O is deterministic function of passwords,
no salt! ⇒ 33% collisions for 478 files crawled from Internet...

25 / 34

Table of contents

1 Introduction to PDF syntax

2 Security problems: case studies

3 Caradoc: 2 years of PDF validation

26 / 34

Caradoc validation

I worked on Caradoc, a PDF validator. Implementation in OCaml
from the PDF specification6.

Caradoc verifies the following:
File syntax.
Objects consistency (type checking).
Graph (page tree...).
Vector graphics instructions (syntax).

Validation workflow.

PDF

strict parser

relaxed parser

objects

graph of
references

extraction of
specific objects

type
checking

list of
types

graph
checking

graphics
instructions

future
work

no error
detectednormalization

6https://www.adobe.com/devnet/pdf/pdf_reference.html
27 / 34

https://www.adobe.com/devnet/pdf/pdf_reference.html

Caradoc validation

I worked on Caradoc, a PDF validator. Implementation in OCaml
from the PDF specification6.

Caradoc verifies the following:
File syntax.
Objects consistency (type checking).
Graph (page tree...).
Vector graphics instructions (syntax).

Validation workflow.

PDF

strict parser

relaxed parser

objects

graph of
references

extraction of
specific objects

type
checking

list of
types

graph
checking

graphics
instructions

future
work

no error
detectednormalization

6https://www.adobe.com/devnet/pdf/pdf_reference.html
27 / 34

https://www.adobe.com/devnet/pdf/pdf_reference.html

Syntax restriction

At syntax level, guarantee extraction of objects without ambiguity:
Grammar formalization7 (BNF).
Structure restrictions (no updates, no linearization, etc.).
Systematic rejection of “corrupted” files.

When a conforming reader reads a PDF file with a
damaged or missing cross-reference table, it may
attempt to rebuild the table by scanning all the objects
in the file.

— ISO 32000-1:2008, annex C.2

7https://github.com/ANSSI-FR/caradoc/tree/master/doc/grammar
28 / 34

https://github.com/ANSSI-FR/caradoc/tree/master/doc/grammar

Syntax restriction

At syntax level, guarantee extraction of objects without ambiguity:
Grammar formalization7 (BNF).
Structure restrictions (no updates, no linearization, etc.).
Systematic rejection of “corrupted” files.

When a conforming reader reads a PDF file with a
damaged or missing cross-reference table, it may
attempt to rebuild the table by scanning all the objects
in the file.

— ISO 32000-1:2008, annex C.2

7https://github.com/ANSSI-FR/caradoc/tree/master/doc/grammar
28 / 34

https://github.com/ANSSI-FR/caradoc/tree/master/doc/grammar

Type checking

Types of a 17-page document.

action
page
destination
annotation
resource
outline
content stream
font
name tree
other

29 / 34

Real-world files: lessons learned

Real-world evaluation: 10K files collected from random queries
on a web search engine.

The strict parser rejects common features:

Feature % of files
incremental updates 65%
object streams 37%
free objects 28%
encryption 5%

⇒ Workaround: normalize with relaxed parser first!

30 / 34

Real-world files: lessons learned

Real-world evaluation: 10K files collected from random queries
on a web search engine.

The strict parser rejects common features:

Feature % of files
incremental updates 65%
object streams 37%
free objects 28%
encryption 5%

⇒ Workaround: normalize with relaxed parser first!

30 / 34

Real-world files: lessons learned

Validation after normalization.

normalized

9829 files

type checking type
checked

2105 filestype error

1575 files

graph
checking

instructions
checking

no error
found

1891 files

Type-checker detected typos:
/Blackls1 instead of /BlackIs1,
/XObjcect instead of /XObject.

We identified incorrect tree structures in the wild.

31 / 34

Caradoc: main commands

Some useful caradoc commands:

Get stats
$ caradoc stats file.pdf

Validate
$ caradoc stats --strict file.pdf

Normalize
$ caradoc cleanup file.pdf --out output.pdf

Interactive console UI: explore objects, decode stream, search...
$ caradoc ui file.pdf

More on GitHub: https://github.com/ANSSI-FR/caradoc

32 / 34

https://github.com/ANSSI-FR/caradoc

Conclusion

PDF is an old format (25+ years), not designed for simple
parsing ⇒ error-prone.

Producers make mistakes, readers try best-effort ⇒
compatibility bugs, security holes...

We need cleaner, simpler and more robust file formats! ⇒ e.g.
Protocol Buffers8.

8https://developers.google.com/protocol-buffers/.
33 / 34

https://developers.google.com/protocol-buffers/

Conclusion

My PDF projects:
Caradoc: github.com/ANSSI-FR/caradoc
Cheat sheet: github.com/gendx/pdf-cheat-sheets
PDF corpus: github.com/gendx/pdf-corpus

Some blog posts about PDF: https://gendignoux.com/blog/

Twitter: @gendignoux
GitHub: @gendx

34 / 34

https://github.com/ANSSI-FR/caradoc
https://github.com/gendx/pdf-cheat-sheets
https://github.com/gendx/pdf-corpus
https://gendignoux.com/blog/
https://twitter.com/gendignoux
https://github.com/gendx

	Introduction to PDF syntax
	Security problems: case studies
	Graph structure
	Demonstration
	Encryption

	Caradoc: 2 years of PDF validation
	Syntax restriction
	Type checking
	Implementation

